Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (2): 126-132.doi: 10.6040/j.issn.1673-3770.0.2022.011

Previous Articles     Next Articles

Obstructive sleep apnea hypopnea syndrome and subclinical arteriosclerosis

HAN Yingying,LI Yanzhong   

  1. Department of Otorhinolaryngology, Qilu Hospital of Shandong University / NHC Key Laboratory of Otolaryngology (Shandong University), Jinan 250012, Shandong, China
  • Published:2022-04-15

Abstract: Objective sleep apnea hypopnea syndrome is an independent risk factor for cardiovascular disease, and seriously affects the quality of life and even survival time of patients. It is one of the modifiable risk factors for cardiovascular disease. Atherosclerosis is involved in the pathogenesis of cardiovascular disorders. While a large number of studies have found that obstructive sleep apnea hypopnea syndrome is associated with subclinical atherosclerosis. Our study aims to understand the clear role of obstructive sleep apnea hypopnea syndrome in subclinical arteriosclerosis, and therefore provide evidence for the prevention and early intervention of atherosclerosis in patients with obstructive sleep apnea hypopnea syndrome.

Key words: Obstructive sleep apnea hypopnea syndrome, Subclinical atherosclerosis, Carotid intima-media thickness, Pathogenesis

CLC Number: 

  • R766.43
[1] Javaheri S, Barbe F, Campos-Rodriguez F, et al. Sleep apnea: types, mechanisms, and clinical cardiovascular consequences[J]. J Am Coll Cardiol, 2017, 69(7): 841-858. doi:10.1016/j.jacc.2016.11.069.
[2] Gottlieb DJ, Punjabi NM. Diagnosis and management of obstructive sleep apnea: a review[J]. JAMA, 2020, 323(14): 1389-1400. doi:10.1001/jama.2020.3514.
[3] Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25): 2982-3021. doi:10.1016/j.jacc.2020.11.010.
[4] Song DM, Fang GQ, Mao SZ, et al. Selective inhibition of endothelial NF-κB signaling attenuates chronic intermittent hypoxia-induced atherosclerosis in mice[J]. Atherosclerosis, 2018, 270: 68-75. doi:10.1016/j.atherosclerosis.2018.01.027.
[5] Fang GQ, Song DM, Ye XB, et al. Chronic intermittent hypoxia exposure induces atherosclerosis in ApoE knockout mice: role of NF-κB p50[J]. Am J Pathol, 2012, 181(5): 1530-1539. doi:10.1016/j.ajpath.2012.07.024.
[6] Zhou M, Guo BL, Wang YG, et al. The association between obstructive sleep apnea and carotid intima-media thickness: a systematic review and meta-analysis[J]. Angiology, 2017, 68(7): 575-583. doi:10.1177/0003319716665985.
[7] Zhao YY, Javaheri S, Wang R, et al. Associations between sleep apnea and subclinical carotid atherosclerosis: the multi-ethnic study of atherosclerosis[J]. Stroke, 2019, 50(12): 3340-3346. doi:10.1161/STROKEAHA.118.022184.
[8] Souza SP, Santos RB, Santos IS, et al. Obstructive sleep apnea, sleep duration, and associated mediators with carotid intima-media thickness: the ELSA-Brasil study[J]. Arterioscler Thromb Vasc Biol, 2021, 41(4): 1549-1557. doi:10.1161/ATVBAHA.120.315644.
[9] Sforza E, Boissier C, Martin MS, et al. Carotid artery atherosclerosis and sleep disordered breathing in healthy elderly subjects: the Synapse cohort[J]. Sleep Med, 2013, 14(1): 66-70. doi:10.1016/j.sleep.2012.08.016.
[10] Ljunggren M, Lindberg E, Franklin KA, et al. Obstructive sleep apnea during rapid eye movement sleep is associated with early signs of atherosclerosis in women[J]. Sleep, 2018, 41(7). doi:10.1093/sleep/zsy099.
[11] Chen LD, Lin L, Lin XJ, et al. Effect of continuous positive airway pressure on carotid intima-media thickness in patients with obstructive sleep apnea: a meta-analysis[J]. PLoS One, 2017, 12(9): e0184293. doi:10.1371/journal.pone.0184293.
[12] Biswas M, Saba LC, Omerzu T, et al. A review on joint carotid intima-media thickness and plaque area measurement in ultrasound for cardiovascular/stroke risk monitoring: artificial intelligence framework[J]. J Digit Imaging, 2021, 34(3): 581-604. doi:10.1007/s10278-021-00461-2.
[13] Willeit P, Tschiderer L, Allara E, et al. Carotid intima-media thickness progression as surrogate marker for cardiovascular risk: meta-analysis of 119 clinical trials involving 100 667 patients[J]. Circulation, 2020, 142(7): 621-642. doi:10.1161/CIRCULATIONAHA.120.046361.
[14] O'Leary DH, Bots ML. Imaging of atherosclerosis: carotid intima-media thickness[J]. Eur Heart J, 2010, 31(14): 1682-1689. doi:10.1093/eurheartj/ehq185.
[15] Somers VK, Dyken ME, Mark AL, et al. Sympathetic-nerve activity during sleep in normal subjects[J]. N Engl J Med, 1993, 328(5): 303-307. doi:10.1056/nejm199302043280502.
[16] Gilmartin GS, Lynch M, Tamisier R, et al. Chronic intermittent hypoxia in humans during 28 nights results in blood pressure elevation and increased muscle sympathetic nerve activity[J]. Am J Physiol Heart Circ Physiol, 2010, 299(3): H925-H931. doi:10.1152/ajpheart.00253.2009.
[17] Imadojemu VA, Mawji Z, Kunselman A, et al. Sympathetic chemoreflex responses in obstructive sleep apnea and effects of continuous positive airway pressure therapy[J]. Chest, 2007, 131(5): 1406-1413. doi:10.1378/chest.06-2580.
[18] Imadojemu V, Gleeson K, Quraishi S, et al. Impaired vasodilator responses in obstructive sleep apnea are improved with continuous positive airway pressure therapy[J]. Am J Respir Crit Care Med, 2002, 165(7): 950-953. doi:10.1164/ajrccm.165.7.2102003.
[19] Sayk F, Teckentrup C, Becker C, et al. Effects of selective slow-wave sleep deprivation on nocturnal blood pressure dipping and daytime blood pressure regulation[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298(1): R191-R197. doi:10.1152/ajpregu.00368.2009.
[20] Somers VK, Dyken ME, Skinner JL. Autonomic and hemodynamic responses and interactions during the Mueller maneuver in humans[J]. J Auton Nerv Syst, 1993, 44(2/3): 253-259. doi:10.1016/0165-1838(93)90038-v.
[21] Kohler M, Stradling JR. Mechanisms of vascular damage in obstructive sleep apnea[J]. Nat Rev Cardiol, 2010, 7(12): 677-685. doi:10.1038/nrcardio.2010.145.
[22] Jelic S, le Jemtel TH. Inflammation, oxidative stress, and the vascular endothelium in obstructive sleep apnea[J]. Trends Cardiovasc Med, 2008, 18(7): 253-260. doi:10.1016/j.tcm.2008.11.008.
[23] Cross MD, Mills NL, Al-Abri M, et al. Continuous positive airway pressure improves vascular function in obstructive sleep apnoea/hypopnoea syndrome: a randomised controlled trial[J]. Thorax, 2008, 63(7): 578-583. doi:10.1136/thx.2007.081877.
[24] Knutson AK, Williams AL, Boisvert WA, et al. HIF in the heart: development, metabolism, ischemia, and atherosclerosis[J]. J Clin Invest, 2021, 131(17): e137557. doi:10.1172/JCI137557.
[25] Chang YT, Lin HC, Chang WN, et al. Impact of inflammation and oxidative stress on carotid intima-media thickness in obstructive sleep apnea patients without metabolic syndrome[J]. J Sleep Res, 2017, 26(2): 151-158. doi:10.1111/jsr.12477.
[26] Sofer T, Li RT, Joehanes R, et al. Low oxygen saturation during sleep reduces CD1D and RAB20 expressions that are reversed by CPAP therapy[J]. EBioMedicine, 2020, 56: 102803. doi:10.1016/j.ebiom.2020.102803.
[27] Deeb R, Smeds MR, Bath J, et al. Snoring and carotid artery disease: a new risk factor emerges[J]. Laryngoscope, 2019, 129(1): 265-268. doi:10.1002/lary.27314.
[28] Amatoury J, Howitt L, Wheatley JR, et al. Snoring-related energy transmission to the carotid artery in rabbits[J]. J Appl Physiol(1985), 2006, 100(5): 1547-1553. doi:10.1152/japplphysiol.01439.2005.
[29] Chuang HH, Liu CH, Wang CY, et al. Snoring sound characteristics are associated with common carotid artery profiles in patients with obstructive sleep apnea[J]. Nat Sci Sleep, 2021,13: 1243-1255. doi:10.2147/NSS.S311125.
[30] Floras JS. Sleep apnea and cardiovascular risk[J]. J Cardiol, 2014, 63(1): 3-8. doi:10.1016/j.jjcc.2013.08.009.
[31] Yeghiazarians Y, Jneid H, Tietjens JR, et al. Obstructive sleep apnea and cardiovascular disease: a scientific statement from the American heart association[J]. Circulation, 2021, 144(3): e56-e67. doi:10.1161/CIR.0000000000000988.
[32] Koskinen J, Juonala M, Dwyer T, et al. Impact of lipid measurements in youth in addition to conventional clinic-based risk factors on predicting preclinical atherosclerosis in adulthood: international childhood cardiovascular cohort consortium[J]. Circulation, 2018, 137(12): 1246-1255. doi:10.1161/CIRCULATIONAHA.117.029726.
[33] Raposeiras-Roubin S, Rosselló X, Oliva B, et al. Triglycerides and residual atherosclerotic risk[J]. J Am Coll Cardiol, 2021, 77(24): 3031-3041. doi:10.1016/j.jacc.2021.04.059.
[34] Edgar L, Akbar N, Braithwaite AT, et al. Hyperglycemia induces trained immunity in macrophages and their precursors and promotes atherosclerosis[J]. Circulation, 2021, 144(12): 961-982. doi:10.1161/CIRCULATIONAHA.120.046464.
[35] Aggoun Y, Farpour-Lambert NJ, Marchand LM, et al. Impaired endothelial and smooth muscle functions and arterial stiffness appear before puberty in obese children and are associated with elevated ambulatory blood pressure[J]. Eur Heart J, 2008, 29(6): 792-799. doi:10.1093/eurheartj/ehm633.
[36] Muxfeldt ES. Prevalence of obstructive sleep apnea in refractory hypertension[J]. Hypertension, 2018, 72(3): 592-593. doi:10.1161/hypertensionaha.118.11275.
[37] Gunduz C, Basoglu OK, Hedner J, et al. Hyperlipidaemia prevalence and cholesterol control in obstructive sleep apnoea: data from the European sleep apnea database(ESADA)[J]. J Intern Med, 2019, 286(6): 676-688. doi:10.1111/joim.12952.
[38] Anothaisintawee T, Reutrakul S, van Cauter E, et al. Sleep disturbances compared to traditional risk factors for diabetes development: systematic review and meta-analysis[J]. Sleep Med Rev, 2016, 30: 11-24. doi:10.1016/j.smrv.2015.10.002.
[39] Kim J, Mohler ER, Keenan BT, et al. Carotid artery wall thickness in obese and nonobese adults with obstructive sleep apnea before and following positive airway pressure treatment[J]. Sleep, 2017, 40(9): zsx126. doi:10.1093/sleep/zsx126.
[40] Theodoropoulos K, Lykouras D, Karkoulias K, et al. Association between the severity of newly diagnosed obstructive sleep apnea and subclinical carotid atherosclerosis in patients without overt cardiovascular disease[J]. Eur Rev Med Pharmacol Sci, 2017, 21(7): 1568-1575. PMID: 28429349.
[41] Hao ZL, Qin L, Tong JY, et al. The differences of carotid atherosclerosis among non-OSAHS and OSAHS patients of different severities: a cross-sectional study[J]. Sleep Breath, 2021, 25(2): 639-648. doi:10.1007/s11325-020-02145-7.
[42] Argyris AA, Mouziouras D, Samara S, et al. Superiority of 24-hour aortic over 24-hour brachial pressure to associate with carotid arterial damage on the basis of pressure amplification variability: the SAFAR study[J]. Hypertension, 2022, 79(3): 648-658. doi:10.1161/hypertensionaha.121.17906.
[43] Kario K, Hettrick DA, Prejbisz A, et al. Obstructive sleep apnea-induced neurogenic nocturnal hypertension: a potential role of renal denervation? [J]. Hypertension, 2021, 77(4): 1047-1060. doi:10.1161/HYPERTENSIONAHA.120.16378.
[44] Oscullo G, Sapiña-Beltrán E, Torres G, et al. The potential role of obstructive sleep apnoea in refractory hypertension[J]. Curr Hypertens Rep, 2019, 21(8): 57. doi:10.1007/s11906-019-0963-6.
[45] Drager LF, Bortolotto LA, Krieger EM, et al. Additive effects of obstructive sleep apnea and hypertension on early markers of carotid atherosclerosis[J]. Hypertension, 2009, 53(1): 64-69. doi:10.1161/HYPERTENSIONAHA.108.119420.
[46] Somuncu MU, Karakurt ST, Karakurt H, et al. The additive effects of OSA and nondipping status on early markers of subclinical atherosclerosis in normotensive patients: a cross-sectional study[J]. Hypertens Res, 2019, 42(2): 195-203. doi:10.1038/s41440-018-0143-0.
[47] He LR, Liao X, Zhu GF, et al. miR-126a-3p targets HIF-1α and alleviates obstructive sleep apnea syndrome with hypertension[J]. Hum Cell, 2020, 33(4): 1036-1045. doi:10.1007/s13577-020-00404-z.
[48] Tokgozoglu L, Orringer C, Ginsberg HN, et al. The year in cardiovascular medicine 2021: dyslipidaemia[J]. Eur Heart J, 2022, 43(8): 807-817. doi:10.1093/eurheartj/ehab875.
[49] Drager LF, Tavoni TM, Silva VM, et al. Obstructive sleep apnea and effects of continuous positive airway pressure on triglyceride-rich lipoprotein metabolism[J]. J Lipid Res, 2018, 59(6): 1027-1033. doi:10.1194/jlr.M083436.
[50] Simon, B, Barta I, Gabor B, et al. Effect of 5-year continuous positive airway pressure treatment on MMPs and TIMPs: implications for OSA comorbidities[J]. Scientific reports, 2020. 10(1): 8609. doi:10.1038/s41598-020-65029-6.
[51] Ntambi JM, Miyazaki M. Regulation of stearoyl-CoA desaturases and role in metabolism[J]. Prog Lipid Res, 2004, 43(2): 91-104. doi:10.1016/S0163-7827(03)00039-0.
[52] Drager LF, Li JG, Shin MK, et al. Intermittent hypoxia inhibits clearance of triglyceride-rich lipoproteins and inactivates adipose lipoprotein lipase in a mouse model of sleep apnoea[J]. Eur Heart J, 2012, 33(6): 783-790. doi:10.1093/eurheartj/ehr097.
[53] Li J, Thorne LN, Punjabi NM, et al. Intermittent hypoxia induces hyperlipidemia in lean mice[J]. Circ Res, 2005, 97(7): 698-706. doi:10.1161/01.res.0000183879.60089.a9.
[54] Drager LF, Yao QL, Hernandez KL, et al. Chronic intermittent hypoxia induces atherosclerosis via activation of adipose angiopoietin-like 4[J]. Am J Respir Crit Care Med, 2013, 188(2): 240-248. doi:10.1164/rccm.201209-1688OC.
[55] Tang JJ, Li GX, Liu ZG, et al. Danlou Tablet improves chronic intermittent hypoxia-induced dyslipidemia and arteriosclerosis by HIF-1 α-Angptl4 mRNA signaling pathway[J]. Chin J Integr Med, 2020. doi:10.1007/s11655-020-3255-8.
[56] Rossello X, Raposeiras-Roubin S, Oliva B, et al. Glycated hemoglobin and subclinical atherosclerosis in people without diabetes[J]. J Am Coll Cardiol, 2021, 77(22): 2777-2791. doi:10.1016/j.jacc.2021.03.335.
[57] Adderley NJ, Subramanian A, Toulis K, et al. Obstructive sleep apnea, a risk factor for cardiovascular and microvascular disease in patients with type 2 diabetes: findings from a population-based cohort study[J]. Diabetes Care, 2020, 43(8): 1868-1877. doi:10.2337/dc19-2116.
[58] Pugliese G, Barrea L, Laudisio D, et al. Sleep apnea, obesity, and disturbed glucose homeostasis: epidemiologic evidence, biologic insights, and therapeutic strategies[J]. Curr Obes Rep, 2020, 9(1): 30-38. doi:10.1007/s13679-020-00369-y.
[59] Bornfeldt KE, Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis[J]. Cell Metab, 2011, 14(5): 575-585. doi:10.1016/j.cmet.2011.07.015.
[60] Perakakis N, Farr OM, Mantzoros CS. Leptin in leanness and obesity: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2021, 77(6): 745-760. doi:10.1016/j.jacc.2020.11.069.
[61] Raman P, Khanal S. Leptin in atherosclerosis: focus on macrophages, endothelial and smooth muscle cells[J]. Int J Mol Sci, 2021, 22(11): 5446. doi:10.3390/ijms22115446.
[62] Biddinger SB, Miyazaki M, Boucher J, et al. Leptin suppresses stearoyl-CoA desaturase 1 by mechanisms independent of insulin and sterol regulatory element-binding protein-1c[J]. Diabetes, 2006, 55(7): 2032-2041. doi:10.2337/db05-0742.
[63] Zhang SY, Dong YQ, Wang PC, et al. Adipocyte-derived lysophosphatidylcholine activates adipocyte and adipose tissue macrophage nod-like receptor protein 3 inflammasomes mediating homocysteine-induced insulin resistance[J]. EBioMedicine, 2018, 31: 202-216. doi:10.1016/j.ebiom.2018.04.022.
[64] Ying W, Fu WX, Lee YS, et al. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities[J]. Nat Rev Endocrinol, 2020, 16(2): 81-90. doi:10.1038/s41574-019-0286-3.
[1] WANG Xingxin, YANG Xinyu, ZHENG Xiaojun, DING Lin, SHENG Yawen, BI Xiaoyun, YANG Jiguo. Acupoint application therapy for adenoid hypertrophy in children: a case report [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 122-124.
[2] LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70.
[3] LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91.
[4] WANG YutingOverview,WANG JiaxiGuidance. Research developments on microRNA in the pathogenesis of allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 98-104.
[5] JI Di, DENG Anchun. Meta-analysis of the effect of surgery for obstructive sleep apnea hypopnea syndrome on blood pressure [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 92-98.
[6] XIANG Liulan, YE YuanhangOverview,JIANG Luyun, LIU YangGuidance. Elucidating the role and mechanism of Tim-3 in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 118-122.
[7] ZHU ZhengruOveriew,ZHANG XiaobingGuidance. Correlation between high-mobility group box-1 and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 123-128.
[8] LIN XiaoqinOverview,WU MiaoqinGuidance. Pathogenesis and treatment of idiopathic epiretinal membranes [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(2): 121-128.
[9] LI Xiao, YUAN Ying, LI Yanzhong, WANG Yan, YANG Ke, SUN Yongqiang, YU Xuemin, WANG Ning, WANG Lei. Effects of anxiety and depression on nocturnal blood pressure fluctuation in patients with obstructive sleep apnea hypopnea syndrome [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(6): 68-71.
[10] SONG Fan, HUANG Weijun, XU Huajun, GUAN Jian, YI Hongliang. Relationship between carotid elasticity and oxidative stress in patients with obstructive sleep apnea syndrome [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 99-104.
[11] YAN Zhigang, ZHANG Huihui, YU Dan, LIU Yan, WEN Lianji, WANG Di. Diagnosis and treatment of cognitive deficits in adult patients with obstructive sleep apnea hypopnea syndrome [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 155-161.
[12] Huabin LI,Yuting LAI,Wenxiu JIANG. Endotypes and precision medicine in chronic sinusitis treatment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 9-13.
[13] SUN Ziwen, CUI Hongwei, SUN Xiling, CHEN Chen, ZHANG Lu, HU Zhulin. SUN Ziwen1, CUI Hongwei2, SUN XilingEtiology, pathogenesis, and management of dry eye [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 159-166.
[14] Yu ZHANG,Xicheng SONG. Advances in interaction mechanisms and treatment strategy between chronic rhinosinusitis with nasal polyp and asthma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(1): 49-52.
[15] LI Ling, WANG Chunling, ZHANG Li, LI Yanzhong.. Predictors of difficult airway in patients with obstructive sleep apnea-hypopnea syndrome during general anesthesia. [J]. J Otolaryngol Ophthalmol Shandong Univ, 2017, 31(6): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Bin,LI Bin . Endoscopic sinus surgery for 75 patients with chronic sinusitis and nasal polyps[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 24 -26 .
[2] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 94 -95 .
[3] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(4): 329 -330 .
[4] ZOU Jun,LU Yi,CHU Ren-yuan . Growth features of human embryonic lens epithelial cells cultured in vitro[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(5): 453 -456 .
[5] XIA Wen-qing,ZHENG Min,MAN Xiao-fei,LI Jian-ping . Manual nucleus fragmentation in senile cataracts [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(5): 467 -469 .
[6] LI Xue-chang,WANG Jin-lei,ZHANG Yu-li,DONG Wen-hui,HAN Zai-wen . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(6): 522 -524 .
[7] KANG Hong-jian,LI Xiao-hong,WANG Bao-an,ZHOU Tao . Emergency tracheotomy for patients with severe head injury[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(3): 234 -236 .
[8] YAN Rui,ZHU Lin-jie . Transplantation of limbal autograft following microsurgery for pterygium[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(3): 243 -244 .
[9] HUANG Fang,ZHU Cong-yue . Expression and significance of p21, p73 and PTEN in multiple primary cancers of the head and neck[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(5): 388 -392 .
[10] XU Hao-jie,LI Xue-zhong,CHEN Cheng-fang,WANG Xue-hai . Effect of intranasal endoscopic dacryocystorhinostomy[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(2): 132 -134 .