Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (3): 142-146.doi: 10.6040/j.issn.1673-3770.0.2021.584
Previous Articles Next Articles
LIU Yitong1,2, ZHOU Suizi1,2Overview,QIU Qianhui2
CLC Number:
[1] Sánchez Montalvo A, Gohy S, Rombaux P, et al. The role of IgA in chronic upper airway disease: friend or foe? [J]. Front Allergy, 2022, 3: 852546. doi:10.3389/falgy.2022.852546. [2] Xiao YC, Xu WN, Su WR. NLRP3 inflammasome: a likely target for the treatment of allergic diseases[J]. Clin Exp Allergy, 2018, 48(9): 1080-1091. doi:10.1111/cea.13190. [3] Tieu DD, Kern RC, Schleimer RP. Alterations in epithelial barrier function and host defense responses in chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2009, 124(1): 37-42. doi:10.1016/j.jaci.2009.04.045. [4] Chen MY, Ye XJ, He XH, et al. The signaling pathways regulating NLRP3 inflammasome activation[J]. Inflammation, 2021, 44(4): 1229-1245. doi:10.1007/s10753-021-01439-6. [5] 孙学华, 金树根, 李曼, 等. 先天免疫模式识别受体与病毒感染的研究进展[J]. 中华传染病杂志, 2012, 30(5): 317-320. doi:10.3760/cma.j.issn.1000-6680.2012.05.019. [6] 丁烨, 任静宜, 于洪强, 等. 病原相关分子模式和损伤相关分子模式在免疫炎症反应中的作用[J]. 国际口腔医学杂志, 2016, 43(2): 172-176. doi:10.7518/gjkq.2016.02.013. DING Ye, REN Jingyi, YU Hongqiang, et al. Roles of pathogen-associated and damage-associated molecular patterns in immune inflammatory response[J]. International Journal of Stomatology, 2016, 43(2): 172-176. doi:10.7518/gjkq.2016.02.013. [7] 刘帆, 韩秀珍, 孙妍. Nod样受体蛋白3炎性小体及细胞焦亡在支气管哮喘中的作用[J]. 中华实用儿科临床杂志, 2020, 35(12): 955-957. doi:10.3760/cma.j.cn101070-20200226-00256. LIU Fan, HAN Xiuzhen, SUN Yan. Role of Nod-like receptor pyrin domain 3 inflammasome and pyroptosis in bronchial asthma[J]. Chinese Journal of Applied Clinical Pediatrics, 2020, 35(12): 955-957. doi:10.3760/cma.j.cn101070-20200226-00256. [8] Heneka MT, McManus RM, Latz E. Inflammasome signalling in brain function and neurodegenerative disease[J]. Nat Rev Neurosci, 2018, 19(10): 610-621. doi:10.1038/s41583-018-0055-7. [9] Sandall CF, MacDonald JA. Effects of phosphorylation on the NLRP3 inflammasome[J]. Arch Biochem Biophys, 2019, 670: 43-57. doi:10.1016/j.abb.2019.02.020. [10] Zhang WJ, Chen SJ, Zhou SC, et al. Inflammasomes and fibrosis[J]. Front Immunol, 2021, 12: 643149. doi:10.3389/fimmu.2021.643149. [11] 张慧珊, 叶乐平. 炎性小体与肺部疾病发生及其干预的研究进展[J]. 中华实用儿科临床杂志, 2019, 34(9): 711-714. doi:10.3760/cma.j.issn.2095-428X.2019.09.018. ZHANG Huishan, YE(Le|Yue)(Ping). Advances in inflammasome and pulmonary disease and its intervention[J]. Chinese Journal of Applied Clinical Pediatrics, 2019, 34(9): 711-714. doi:10.3760/cma.j.issn.2095-428X.2019.09.018. [12] Liu QY, Zhang DY, Hu DY, et al. The role of mitochondria in NLRP3 inflammasome activation[J]. Mol Immunol, 2018, 103: 115-124. doi:10.1016/j.molimm.2018.09.010. [13] Wu LY, Ye ZN, Zhou CH, et al. Roles of pannexin-1 channels in inflammatory response through the TLRs/NF-kappa B signaling pathway following experimental subarachnoid hemorrhage in rats[J]. Front Mol Neurosci, 2017, 10: 175. doi:10.3389/fnmol.2017.00175. [14] Groslambert M, Py BF. Spotlight on the NLRP3 inflammasome pathway[J]. J Inflamm Res, 2018, 11: 359-374. doi:10.2147/JIR.S141220. [15] Wu XX, Zhang HY, Qi W, et al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis[J]. Cell Death Dis, 2018, 9(2): 171. doi:10.1038/s41419-017-0257-3. [16] Wang YF, Shi PL, Chen Q, et al. Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation[J]. J Mol Cell Biol, 2019, 11(12): 1069-1082. doi:10.1093/jmcb/mjz020. [17] Gaidt MM, Ebert TS, Chauhan D, et al. Human monocytes engage an alternative inflammasome pathway[J]. Immunity, 2016, 44(4): 833-846. doi:10.1016/j.immuni.2016.01.012. [18] Fokkens W, Desrosiers M, Harvey R, et al. EPOS2020: development strategy and goals for the latest European Position Paper on Rhinosinusitis[J]. Rhinology, 2019, 57(3): 162-168. doi:10.4193/Rhin17.253. [19] 陈杰, 毛弈友, 陈卓, 等. Ⅱ型炎症在慢性鼻窦炎伴鼻息肉中的作用机制和治疗进展[J]. 中华耳鼻咽喉头颈外科杂志, 2020, 55(10): 993-997. doi:10.3760/cma.j.cn115330-20200813-00671. CHEN Jie, MAO Yiyou, CHEN Zhuo, et al. Research progress on the role of type Ⅱ inflammation in chronic rhinosinusitis with polyps[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2020, 55(10): 993-997. doi:10.3760/cma.j.cn115330-20200813-00671. [20] 韩佳琦, 苑国庆, 朱宇彤, 等. 慢性鼻窦炎伴鼻息肉患者血清25-(OH)D3和组织中TGF-β1水平及临床意义[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 23-27. doi:10.6040/j.issn.1673-3770.0.2020.536. HAN Jiaqi, YUAN Guoqing, ZHU Yutong, et al. Serum 25-(OH)D3 and tissue TGF-β1 levels in patients with chronic rhino sinusitis with nasal polyps and their clinical significance[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 23-27. doi:10.6040/j.issn.1673-3770.0.2020.536. [21] Yao Y, Yang CG, Yi X, et al. Comparative analysis of inflammatory signature profiles in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyposis[J]. Biosci Rep, 2020, 40(2): BSR20193101. doi:10.1042/BSR20193101. [22] Wang Y, Chen S, Wang WW, et al. Role of P2X7R in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps[J]. Mol Med Rep, 2021, 24(1): 521. doi:10.3892/mmr.2021.12160. [23] Zhong B, du JT, Liu F, et al. Hypoxia-induced factor-1α induces NLRP3 expression by M1 macrophages in noneosinophilic chronic rhinosinusitis with nasal polyps[J]. Allergy, 2021, 76(2): 582-586. doi:10.1111/all.14571. [24] Gevaert E, Delemarre T, de Volder J, et al. Charcot-Leyden crystals promote neutrophilic inflammation in patients with nasal polyposis[J]. J Allergy Clin Immunol, 2020, 145(1): 427-430.e4. doi:10.1016/j.jaci.2019.08.027. [25] 潘立, 刘争. 基于嗜酸粒细胞性炎症的慢性鼻窦炎伴鼻息肉的分类方法[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(3): 222-226. doi:10.3760/cma.j.issn.1673-0860.2019.03.013. PAN Li, LIU Zheng. Classification of chronic rhinosinusitis with nasal polyps based on eosinophilic inflammation[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2019, 54(3): 222-226. doi:10.3760/cma.j.issn.1673-0860.2019.03.013. [26] 杜志宏, 于亚峰. NLRP3炎性小体在嗜酸粒细胞性鼻息肉发病及复发中的作用[J]. 山东大学耳鼻喉眼学报, 2016, 30(1): 31-35, 39. doi:10.6040/j.issn.1673-3770.0.2015.318. DU Zhihong, YU Yafeng. Effect of NLRP3 inflammasome in the pathogenesis and relapse of eosinophilic nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2016, 30(1): 31-35, 39. doi:10.6040/j.issn.1673-3770.0.2015.318. [27] 王洪, 马燕春. NLRP1、NLRP3炎性体信号通路在儿童炎症性肠病免疫机制中的作用研究[J]. 中国当代儿科杂志, 2020, 22(8): 854-859. doi:10.7499/j.issn.1008-8830.2003097. WANG Hong, MA Yanchun. Role of NLRP1 and NLRP3 inflammasome signaling pathways in the immune mechanism of inflammatory bowel disease in children[J]. Chinese Journal of Contemporary Pediatrics, 2020, 22(8): 854-859. doi:10.7499/j.issn.1008-8830.2003097. [28] Wei Y, Zhang J, Wu XM, et al. Activated pyrin domain containing 3(NLRP3)inflammasome in neutrophilic chronic rhinosinusitis with nasal polyps(CRSwNP)[J]. J Allergy Clin Immunol, 2020, 145(3): 1002-1005.e16. doi:10.1016/j.jaci.2020.01.009. [29] Lee SH, Choi MR, Chung J, et al. Povidone iodine suppresses LPS-induced inflammation by inhibiting TLR4/MyD88 formation in airway epithelial cells[J]. Sci Rep, 2022, 12(1): 3681. doi:10.1038/s41598-022-07803-2. [30] 中华医学会呼吸病学分会哮喘学组. 上-下气道慢性炎症性疾病联合诊疗与管理专家共识[J]. 中华医学杂志, 2017, 97(26): 2001-2022. doi:10.3760/cma.j.issn.0376-2491.2017.26.001. [31] Shi QP, Lei ZW, Cheng G, et al. Mitochondrial ROS activate interleukin-1β expression in allergic rhinitis[J]. Oncol Lett, 2018, 16(3): 3193-3200. doi:10.3892/ol.2018.8984. [32] Wu JH, Wu LZ, Zhang L, et al. Overexpression of miR-224-5p alleviates allergic rhinitis in mice via the TLR4/MyD88/NF-κB pathway[J]. Exp Anim, 2021, 70(4): 440-449. doi:10.1538/expanim.20-0195. [33] Zhang S, Lin SH, Tang QF, et al. Knockdown of miR2055p alleviates the inflammatory response in allergic rhinitis by targeting Bcell lymphoma 6[J]. Mol Med Rep, 2021, 24(5): 818. doi:10.3892/mmr.2021.12458. [34] Yu XF, Wang M, Zhao H, et al. Targeting a novel hsa_circ_0000520/miR-556-5p/NLRP3 pathway-mediated cell pyroptosis and inflammation attenuates ovalbumin(OVA)-induced allergic rhinitis(AR)in mice models[J]. Inflamm Res, 2021, 70(6): 719-729. doi:10.1007/s00011-021-01472-z. [35] Xiao LF, Jiang L, Hu Q, et al. microRNA-133b ameliorates allergic inflammation and symptom in murine model of allergic rhinitis by targeting Nlrp3[J]. Cell Physiol Biochem, 2017, 42(3): 901-912. doi:10.1159/000478645. [36] Li J, Zhang Y, Zhang L, et al. Fine particulate matter exposure exacerbated nasal mucosal damage in allergic rhinitis mice via NLRP3 mediated pyroptosis[J]. Ecotoxicol Environ Saf, 2021, 228: 112998. doi:10.1016/j.ecoenv.2021.112998. [37] Yang ZX, Liang CQ, Wang TY, et al. NLRP3 inflammasome activation promotes the development of allergic rhinitis via epithelium pyroptosis[J]. Biochem Biophys Res Commun, 2020, 522(1): 61-67. doi:10.1016/j.bbrc.2019.11.031. [38] Zhang WT, Ba GY, Tang R, et al. Ameliorative effect of selective NLRP3 inflammasome inhibitor MCC950 in an ovalbumin-induced allergic rhinitis murine model[J]. Int Immunopharmacol, 2020, 83: 106394. doi:10.1016/j.intimp.2020.106394. [39] Li Y, Ouyang YH, Jiao J, et al. Exposure to environmental black carbon exacerbates nasal epithelial inflammation via the reactive oxygen species(ROS)-nucleotide-binding, oligomerization domain-like receptor family, pyrin domain containing 3(NLRP3)-caspase-1-interleukin 1β(IL-1β)pathway[J]. Int Forum Allergy Rhinol, 2021, 11(4): 773-783. doi:10.1002/alr.22669. [40] Xu JT, Zhang Q, Li ZX, et al. Astragalus polysaccharides attenuate ovalbumin-induced allergic rhinitis in rats by inhibiting NLRP3 inflammasome activation and NOD2-mediated NF-κB activation[J]. J Med Food, 2021, 24(1): 1-9. doi:10.1089/jmf.2020.4750. |
[1] | AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14. |
[2] | YAO Shuang,LOU Hongfei. Advances in endotypes and precision medicine in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 20-29. |
[3] | SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42. |
[4] | WANG Huan, HU Li,YU Hongmeng. Research progress of olfactory dysfunction in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 43-49. |
[5] | YI Ruonan,CHEN Fuquan. Eosinophils and Olfactory Dysfunction [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 50-55. |
[6] | GU Yu, WAN Xin,XIAO Zi'an. The interaction between neutrophils and eosinophils in chronic rhinosinusitis and the implications on treatment options [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 56-63. |
[7] | LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70. |
[8] | QIAO Xinjie,. Research progress on the signal transduction pathway and other factors related to epithelial-mesenchymal transformation in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 71-77. |
[9] | HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83. |
[10] | LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91. |
[11] | CAO Xuan,XIAO Xuping, LI Yunqiu. Advances in the application of hyaluronic acid in chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 104-109. |
[12] | NI Jingzi, WAN Wenjin,CHENG Lei. Research progress on health-related quality of life in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 110-115. |
[13] | LIN Yihang,LI Youjin. Research progress on gut microbiome in children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 116-122. |
[14] | LIU Zhen,SONG Xicheng. Mechanisms and research progress of pyroptosis in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 123-129. |
[15] | WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141. |
|