山东大学耳鼻喉眼学报 ›› 2017, Vol. 31 ›› Issue (3): 55-59.doi: 10.6040/j.issn.1673-3770.0.2017.228

• 变应性鼻结膜炎防治进展·综述 • 上一篇    下一篇

变应性鼻炎鼻黏膜上皮细胞免疫活性研究进展

沙骥超,张策,朱冬冬   

  1. 吉林大学中日联谊医院耳鼻喉头颈外科, 吉林 长春130033
  • 收稿日期:2017-05-22 出版日期:2017-06-16 发布日期:2017-06-16
  • 通讯作者: 朱冬冬. E-mail:zhudd@jlu.edu.cn

Immunocompetence of nasal epithelial cells in allergic rhinitis.

SHA Jichao, ZHANG Ce, ZHU Dongdong   

  1. Department of Otolaryngology Head Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
  • Received:2017-05-22 Online:2017-06-16 Published:2017-06-16

摘要: 鼻黏膜上皮细胞构成的物理和化学屏障是呼吸道接触外源性微生物、变应原和环境污染物等的第一道防线。除理化屏障功能,上皮细胞在变应性鼻炎发病机制中的免疫调控作用受到越来越多的重视。上皮细胞对天然免疫和获得性免疫均具有重要的免疫调控功能,这种免疫调控功能的实现依赖于功能性细胞因子的表达及上皮细胞与下游免疫细胞的相互信息传递。现就鼻黏膜上皮细胞与变应原及其他免疫细胞之间的信息传递做一简要梳理。

关键词: 变应性鼻炎, 信号传导, 鼻黏膜上皮细胞

Abstract: Although much is known about the imbalance of Th1/Th2 in allergic rhinitis(AR), the role of nasal epithelial cells as the first line of mucosal defense against inhaled pathogens remains undefined, despite the growing concern surrounding it. We now realize that epithelial cells recognize allergens through expression of pattern-recognition receptors and then mount the innate and adaptive immune responses. Therefore, epithelial cells are crucial in determining the outcome of allergen inhalation in AR. Here, we will review the literature on immunocompetence of nasal epithelial cells in AR.

Key words: Crosstalk, Allergic rhinitis, Nasal epithelial cells

中图分类号: 

  • R765.21
[1] 韩德民,张罗,董震,等. 过敏性鼻炎[M]. 北京:人民卫生出版社, 2014.
[2] Pawankar R, Canonica GW, Holgate ST, et al. WAO White Book on Allergy 2011-2012: Executive Summary.
[3] Brozek JL, Bousquent J, Baena-Cagnani CE, Global Allergy and Asthma European Network;Grading of Recommendations Assessment, Development and Evaluation Working Group, et al. Allergic rhinitis and its impact on Asthma(ARIA)guidelines: 2010 revision[J]. J Allergy Clin Immunol, 2010, 126(3):466-476.
[4] Greiner AN, Hellings PW, Rotiroti G, et al. Allergic rhinitis[J]. Lancet, 2011, 378(9809):2112-2122.
[5] Rondon C, Canto G, Blanca M. Local allergic rhinitis: a new entity, characterization and further studies[J]. Curr Opin Allergy Clin Immunol, 2010, 10(1):1-7.
[6] Kato A, Schleimer RP. Beyond inflammation: airway epithelial cells are at the interface of innate and adaptive immunity[J]. Cur Opin Immunol, 2007, 19(6):711-720.
[7] Lee MS, Kim YJ. Signaling pathways downstream of pattern-recognition receptors and their cross talk[J]. Ann Rev Biochem, 2007, 76:447-480.
[8] Sha Q,Truong-Tran AQ, Plitt JR, et al. Activation of airway epithelial cells by toll-like receptor agonists[J]. Am J Respir Cell Mol Biol, 2004, 31(3):358-364.
[9] Wang Y, Bai C, Li K, et al. Role of airway epithelial cells in development of asthma and allergic rhinitis[J]. Respir Med, 2008,102(7):949-955.
[10] Netea MG, Azam T, Ferwerda G, et al. IL-32 synergizes with nucleotide oligomerization domain(NOD)1 and NOD2 ligands for IL-1beta and IL-6 production throuh a caspase 1-dependent mechanism[J]. Proc Natl Acad Sci USA, 2005, 102(45):16309-16314.
[11] Barik S. What really rigs up RIG-I?[J]. J Innate Immun, 2016, 8(5):429-436.
[12] Tyagi N, Farnell EJ, Fitzsimmons CM, et al. Comparisons of allergenic and metazoan parasite proteins: allergy the price of immunity[J]. PloS Comput Biol, 2015, 11(10): e1004546.
[13] Herbert CA, King CM, Ring PC, et al. Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1[J]. Am J Respir Cell Mol Biol, 1995, 12(4):369-378.
[14] Tulic MK, Vivinus NM, Rekima A, et al. Presence of commensal house dust mite allergen in human gastrointestinal tract: a potential contributor to intestinal barrier dysfunction[J]. Gut, 2016, 65(5):757-766.
[15] Post S, Nawijn MC, Jonker MR, et al. House dust mite-induced calcium signaling instigates epithelial barrier dysfunction and CCL20 production[J]. Allergy, 2013, 68(9): 1117-1125.
[16] Heijink IH, van Oosterhout A, Kapus A. Epidermal growth factor receptor signalling contributes to house dust mite-induced epithelial barrier dysfunction[J]. Eur Respir J, 2010, 36(5):1016-1026.
[17] Georas SN, Rezaee F. Epithelial barrier function: at the frontline of asthma immunology and allergic airway inflammation[J]. J Allergy Clin Immunol, 2014, 134(3):509-520.
[18] Bohm M, Avgitidou G, Hassan E, et al. Liposomes: a new non-pharmcological therapy concept for seasonal-allergicrhinoconjunctivitis[J]. Eur Arch Otorhinolaryngol, 2012, 269(2):495-502.
[19] Ichikawa K, Asai T, Shimizu K, et al. Suppression of immune response by antigen-modified liposomes encapsulatin model agents: a novel strategy for the treatment of allergy[J]. J Control Release, 2013, 167(3):284-289.
[20] Hwa HG, Hyouk-Soo K, Keun-Ai M, et al. Clusterin modulates allergic airway inflammation by attenuating CCL20-mediated dendritic cell recruitment[J]. J Immunol, 2016, 196(5):2021-2030.
[21] Oliver JB, Sangeeta S, Catherine M, et al. Transforming Growth factor-β and interleulin-1β signaling pathways converge on the chemokine CCL20 promoter[J]. J Biol Chem, 2015, 290(23):14717-14728.
[22] Wu NL, Huang DY, Tsou HN, et al. Syk mediates IL-17-induced CCL20 expression by targeting Act1-dependent K63-linked ubiquitination of TRAF6[J]. J Invest Dermatol,2015, 135(2):490-498.
[23] Pichavant M, Charbonnier AS, Taront S, et al. Asthma bronchial epithelium activated by the proteolytic allergen Der p1 increases selective dendritic cell recruitment[J]. J Allergy Clin Immunol, 2005, 115(4):771-778.
[24] Osterlund C, Gronlund H, Polovic N, et al. The non-proteolytic house dust mite allergen Der p2 induce NF-kappaB and MAPK dependent activation of bronchial epithelial cells[J]. Clin Exp Allergy, 2009, 39(8):1199-1208.
[25] Tibor ZV, Sabrina V, Emma S, et al. Aeroallergen challenge promotes dendritic cell proliferation in the airways[J]. J Immunol, 2013, 190(3):897-903.
[26] Mitchell PD, OByrne PM. Biologics and the lung: TSLP and other epithelial cell-derived cytokines in asthma[J]. Pharmacol Ther, 2016, June:[epub ahead of print].
[27] Meng Q, Liu X, Li P, et al. The influence of house dust mite sublingual immunotherapy on the TSLP-OX40L signaling pathway in patients with allergic rhinitis[J]. Int Form Allergy Rhinol, 2016, March:[epub ahead of print].
[28] McNamara PS, Fonceca AM, Howarth D, et al. Respiratory syncytial virus infection of airway epithelial cells, in vivo and in vitro, supports pulmonary antibody responses by inducing expression of the B cell differentiation factor BAFF[J]. Thorax, 2013, 68(1):76-81.
[29] Kato A, Truong-Tran AQ, Scott AL, et al. Airway epithelial cells produce B cell-activating factor of TNF family by an IFN-beta-dependent mechanism[J]. J Immunol, 2006, 177(10):7164-7172.
[30] Litinskiy MB, Nardelli B, Hilbert DM, et al. DCs induce CD40-independent immunoglobulin class swithing through BLyS and APRIL. Nat Immunol, 2002, 3(9):882-829.
[31] Meng H, Li H, Ohe R, et al. Thymic stromal lymphopoietin in tonsillar follicular dendritic cells correlates with elevated serum immunoglobulin A titer by promoting tonsillar immunoglobulin A class switch in immunoglobulin A nephropathy[J]. Transl Res, 2016, Apir:[epub ahead of print].
[32] Ying S, O’Connor B, Ratoff J, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity[J]. J Immunol, 2005, 174(12):8183-8190.
[33] Montes-Vizuet R, Vega-Miranda A, Valencia-Maqueda E, et al. CC chemokine ligand 1 is released into the airways of atopic asthmatics[J]. Eur Respir J, 2006, 28(1):59-67.
[34] Heijink IH, Marcel Kies P, van Oosterhout AJ, et al. Derp, IL-4, and TGF-beta cooperatively induce EGFR-dependent TARC expression in airway epithelum[J]. Am J Respir Cell Mol Biol, 2007, 36(3):351-359.
[35] Ajram L, Begg M, Slack R, et al. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists[J]. Eur J Pharmacol, 2014, 729(1):75-85.
[36] Sacco O, Lantero S, Scarso L, et al. Modulation of HLA-DR antigen and ICAM-1 molecule expression on airway eptiehlial cells by sodium nedocromil[J]. Ann Allergy Asthma Immunol, 1999, 83(1):49-54.
[37] Shelfoon C, Shariff S, Traves SL, et al. Chemokine release from human rhinovirus-infected airway epithelial cells promotes fibroblast migration[J]. J Allergy Clin Immunol, 2016, 138(1):114-122.
[38] Fenwick PS, Macedo P, Kilty IC, et al. Effect of JAK inhibitors on release of CXCL9, CXCL10, and CXCL 11 form human airway epithelial cells[J]. Plos One, 2015, 10(6):e0128757.
[39] Girolamo P, Alessandro V, Maria TB, et al. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma[J]. Mediators Inflamm, 2015, 2015:879783.
[40] Zou JY, Huang SH, Li Y, et al. Airway epithelial cell-derived insulin-like growth factor-1 triggers skewed CD8(+)T cell polarization[J]. Cell Biol Int, 2014, 38(10):1148-54.
[1] 王坛,武珂,李连庆,宫丽丽. 皮下免疫治疗注射后出现全身不良反应的伴发因素及处理[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 71-74.
[2] 卢汉桂,林歆胜,姚丹勉,魏永新,李创伟. 变应性鼻炎大鼠IL-35的表达及对辅助性T细胞免疫调节的影响[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 66-70.
[3] 浦洪波,杜晓东. 无锡地区2 000例变应性鼻炎变应原检测结果分析[J]. 山东大学耳鼻喉眼学报, 2018, 32(4): 105-107.
[4] 陈鸣,俞雪飞. 浅谈伴有变应性鼻炎的慢性鼻窦炎的治疗[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 18-22.
[5] 甘彬,张永举,许安廷. BRF2在慢性鼻-鼻窦炎伴鼻息肉发病过程中的作用研究[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 47-53.
[6] 吴湘萍. 患者管理方式对变应性鼻炎舌下含服粉尘螨滴剂疗效的影响[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 68-72.
[7] 李松,王宗贵,杨景朴,张竹萍. 鼻内镜下翼管神经切断术进展[J]. 山东大学耳鼻喉眼学报, 2018, 32(1): 72-76.
[8] 郅莉莉,宋道亮. 嗜酸性粒细胞及IL5在上颌窦后鼻孔息肉与鼻息肉中表达的差异[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 43-46.
[9] 万文锦,王文,程雷. 尘螨变应性鼻炎皮下免疫治疗与舌下免疫治疗的荟萃分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 103-108.
[10] 朱新华. 变应性鼻炎冲击免疫治疗的临床应用[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 13-17.
[11] 刘怀涛,马瑞霞,程雷. 难治性变应性鼻炎的外科治疗[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 18-21.
[12] 关凯,李丽莎. 鼻腔冲洗在变应性鼻炎防治中的应用[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 22-27.
[13] 史丽,赵莉,张红萍. 变应性鼻炎的长期抗炎治疗[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 9-12.
[14] 刘静. 基于整体观念变应性鼻炎的中医辨证论治[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 28-30.
[15] 程雷,钱俊俊,田慧琴. 变应性鼻炎研究的若干进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 1-3.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!