山东大学耳鼻喉眼学报 ›› 2020, Vol. 34 ›› Issue (2): 121-128.doi: 10.6040/j.issn.1673-3770.0.2019.499

• 病例报告 • 上一篇    

特发性视网膜前膜的发病机制及治疗进展

林晓芹1综述吴苗琴2审校   

  1. 1. 蚌埠医学院, 安徽 蚌埠 233000;
    2. 浙江省人民医院/杭州医学院附属人民医院 眼科, 浙江 杭州 310014
  • 发布日期:2020-04-07
  • 通讯作者: 吴苗琴. E-mail:eyewmq@126.com
  • 基金资助:
    浙江省医药卫生科技计划项目(WKJ-ZJ-1817)

Pathogenesis and treatment of idiopathic epiretinal membranes

LIN Xiaoqin1Overview,WU Miaoqin2Guidance   

  1. 1. Bengbu Medical College, Bengbu 233000, Anhui, China;
    2. Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
  • Published:2020-04-07

摘要: 特发性视网膜前膜(iERM)在老年人群中常见,对于症状严重者可能出现视物模糊、视物扭曲、单眼复视和视物变大或变小等症状,严重影响患者的日常生活,因而了解其发病机制和有效治疗具有重要的意义。

关键词: 特发性视网膜前膜, 发病机制, 治疗

Abstract: Idiopathic epiretinal membranes are common in older people. Some patients will have symptoms, including blurred vision, metamorphopsia, monocular diplopia, and micro/macropsia. These symptoms can seriously affect their daily life. Therefore, understanding the pathogenesis of idiopathic epiretinal membranes and how they can be effectively treated is important.

Key words: Idiopathic epiretinal membrane, Pathogenesis, Treatment

中图分类号: 

  • R774.5
[1] Wang SB, Mitchell P, Plant AJ, et al. Prevalence and risk factors of epiretinal membrane in a cohort with cardiovascular disease risk, compared with the blue mountains eye study.[J]. Br J Ophthalmol, 2015, 99(12):1601-1605. doi: 10.1136/bjophthalmol-2015-306776.
[2] Ye HH, Zhang Q, Liu XH, et al. Prevalence and associations of epiretinal membrane in an elderly urban Chinese population in China: the Jiangning Eye Study[J]. Br J Ophthalmol, 2015, 99(12): 1594-1597. doi:10.1136/bjophthalmol-2015-307050.
[3] Kim JM, Lee H, Shin JP, et al. Epiretinal membrane: prevalence and risk factors from the Korea national health and nutrition examination survey, 2008 through 2012[J]. Korean J Ophthalmol, 2017, 31(6): 514-523. doi:10.3341/kjo.2016.0098.
[4] Myojin S, Yoshimura T, Yoshida S, et al. Gene expression analysis of the irrigation solution samples collected during vitrectomy for idiopathic epiretinal membrane[J]. PLoS One, 2016, 11(10): e0164355. doi:10.1371/journal.pone.0164355.
[5] Wang XC, Jobin C, Allen JB, et al. Suppression of NF-kappaB-dependent proinflammatory gene expression in human RPE cells by a proteasome inhibitor[J]. Invest Ophthalmol Vis Sci, 1999, 40(2):477-486.
[6] Harada C, Harada T, Mitamura Y, et al. Diverse NF-kappaB expression in epiretinal membranes after human diabetic retinopathy and proliferative vitreoretinopathy[J]. Mol Vis, 2004, 10: 31-36.
[7] Iannetti L, Accorinti M, Malagola R, et al. Role of the intravitreal growth factors in the pathogenesis of idiopathic epiretinal membrane[J]. Invest Ophthalmol Vis Sci, 2011, 52(8): 5786-5789. doi:10.1167/iovs.10-7116.
[8] Burke SJ, Lu D, Sparer TE, et al. NF-κB and STAT1 control CXCL1 and CXCL2 Gene Transcription[J]. Am J Physiol Endocrinol Metab, 2014, 306(2):E131. doi:10.1152/ajpendo.00347.2013.
[9] Yamamoto H, Hayashi H, Uchida H, et al. Increased soluble interleukin-6 receptor in vitreous fluid of proliferative vitreoretinopathy[J]. Curr Eye Res, 2003, 26(1): 9-14. doi:10.1076/ceyr.26.1.9.14251.
[10] Kohno RI, Hata Y, Kawahara S, et al. Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction[J]. Br J Ophthalmol, 2009, 93(8): 1020-1026. doi:10.1136/bjo.2008.155069.
[11] Malgorzata Goczalik I, Raap M, Weick M, et al. The activation of IL-8 receptors in cultured Guinea pig Müller glial cells is modified by signals from retinal pigment epithelium[J]. J Neuroimmunol, 2005, 161(1/2): 49-60. doi:10.1016/j.jneuroim.2004.12.004.
[12] Zaja Milatovic S, Richmond A. CXC chemokines and their receptors: a case for a significant biological role in cutaneous wound healing[J]. 2008, 23(11):1399-1407. doi: 10.14670/HH-23.1399.
[13] Snead DR, James S, Snead MP. Pathological changes in the vitreoretinal junction 1: epiretinal membrane formation[J]. Eye(Lond), 2008, 22(10): 1310-1317. doi:10.1038/eye.2008.36.
[14] Harada T, Harada C, Mitamura Y, et al. Neurotrophic factor receptors in epiretinal membranes after human diabetic retinopathy[J]. Diabetes Care, 2002, 25(6): 1060-1065. doi:10.2337/diacare.25.6.1060.
[15] Powell DW, Mifflin RC, Valentich JD, et al. Myofibroblasts. I. Paracrine cells important in health and disease[J]. Am J Physiol, 1999, 277(1): C1-C9. doi:10.1152/ajpcell.1999.277.1.C1.
[16] Joshi M, Agrawal S, Christoforidis JB. Inflammatory mechanisms of idiopathic epiretinal membrane formation[J]. Mediators Inflamm, 2013, 2013: 192582. doi:10.1155/2013/192582.
[17] Liu P, Zhang C, Feng JB, et al. Cross talk among Smad, MAPK, and integrin signaling pathways enhances adventitial fibroblast functions activated by transforming growth factor-beta1 and inhibited by Gax[J]. Arterioscler Thromb Vasc Biol, 2008, 28(4): 725-731. doi:10.1161/ATVBAHA.107.159889.
[18] Zhang Y, Wang JH, Zhang YY, et al. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways[J]. Sci Rep, 2016, 6: 23010. doi:10.1038/srep23010.
[19] Shao DD, Suresh R, Vakil V, et al. Pivotal Advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation[J]. J Leukoc Biol, 2008, 83(6): 1323-1333. doi:10.1189/jlb.1107782.
[20] Hashimoto R, Jiang MZ, Shiba T, et al. Soluble form of LR11 is highly increased in the vitreous fluids of patients with idiopathic epiretinal membrane[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2017, 255(5): 885-891. doi:10.1007/s00417-017-3585-1.
[21] Sommer F, Pollinger K, Brandl F, et al. Hyalocyte proliferation and ECM accumulation modulated by bFGF and TGF-β1[J]. Graefes Arch Clin Exp Ophthalmol, 2008, 246(9): 1275-1284. doi:10.1007/s00417-008-0846-z.
[22] Distler JHW, Schett G, Distler O. The controversial role of tumor necrosis factor α in fibrotic diseases[J]. Arthritis Rheum, 2008, 58(8): 2228-2235. doi:10.1002/art.23645.
[23] Mia MM, Boersema M, Bank RA. Interleukin-1β attenuates myofibroblast formation and extracellular matrix production in dermal and lung fibroblasts exposed to transforming growth factor-β1[J]. PLoS One, 2014, 9(3): e91559. doi:10.1371/journal.pone.0091559.
[24] Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder[J]. J Clin Invest, 2007, 117(3): 557-567. doi:10.1172/JCI31139.
[25] Zandi S, Tappeiner C, Pfister IB, et al. Vitreal cytokine profile differences between eyes with epiretinal membranes or macular holes[J]. Investig Ophthalmol Vis Sci, 2016, 57(14): 6320-6326. doi:10.1167/iovs.16-20657.
[26] Mandal N, Kofod M, Vorum H, et al. Proteomic analysis of human vitreous associated with idiopathic epiretinal membrane[J]. Acta Ophthalmol, 2013, 91(4): e333-e334. doi:10.1111/aos.12075.
[27] Kampik A, Kenyon KR, Michels RG, et al. Epiretinal and vitreous membranes: comparative study of 56 cases. 1981[J]. Retina(Philadelphia, Pa), 2005, 25(5 Suppl): 1445-1454. doi:10.1097/00006982-200507001-00010.
[28] Tuuminen R, Haukka J, Loukovaara S. Statins in rhegmatogenous retinal detachment are associated with low intravitreal angiopoietin-2, VEGF and MMP-2 levels, and improved visual acuity gain in vitrectomized patients[J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253(10):1685-1693.doi: 10.1007/s00417-014-2873-2.
[29] Andjeli c S, Lumi X, Yan XH, et al. Characterization of ex vivo cultured neuronal-and glial-like cells from human idiopathic epiretinal membranes[J]. BMC Ophthalmol, 2014, 14: 165. doi:10.1186/1471-2415-14-165.
[30] Kampik A, Green WR, Michels RG, et al. Ultrastructural features of progressive idiopathic epiretinal membrane removed by vitreous surgery[J]. Am J Ophthalmol, 1980, 90(6): 797-809. doi:10.1016/s0002-9394(14)75195-5.
[31] Parapuram SK, Chang BY, Li L, et al. Differential effects of TGFbeta and vitreous on the transformation of retinal pigment epithelial cells[J]. Invest Ophthalmol Vis Sci, 2009, 50(12): 5965-5974. doi:10.1167/iovs.09-3621.
[32] Schumann RG, Eibl KH, Zhao F, et al. Immunocytochemical and ultrastructural evidence of glial cells and hyalocytes in internal limiting membrane specimens of idiopathic macular holes[J]. Invest Ophthalmol Vis Sci, 2011, 52(11): 7822-7834. doi:10.1167/iovs.11-7514.
[33] Bu SC, Kuijer R, van der Worp RJ, et al. Immunohistochemical evaluation of idiopathic epiretinal membranes and in vitro studies on the effect of TGF-β on Müller cells[J]. Investig Ophthalmol Vis Sci, 2015, 56(11): 6506-6514. doi:10.1167/iovs.14-15971.
[34] Kanda A, Noda K, Hirose I, et al. TGF-β-SNAIL Axis induces Müller glial-mesenchymal transition in the pathogenesis of idiopathic epiretinal membrane[J]. Sci Rep, 2019, 9(1): 673. doi:10.1038/s41598-018-36917-9.
[35] Kishi S, Shimizu K. Oval defect in detached posterior hyaloid membrane in idiopathic preretinal macular fibrosis[J]. Am J Ophthalmol, 1994, 118(4): 451-456. doi:10.1016/s0002-9394(14)75795-2.
[36] Foos RY. Vitreoretinal juncture epiretinal membranes and vitreous[J]. Invest Ophthalmol Vis Sci, 1977, 16(5):416-422. PMID:852943.
[37] Satofuka S, Kanda A, Ishida S. Receptor-associated prorenin system in the pathogenesis of retinal diseases[J]. Front Biosci(Schol Ed), 2012, 4: 1449-1460. doi:10.2741/s345.
[38] Dong Y, Kanda A, Noda K, et al. Pathologic roles of receptor-associated prorenin system in idiopathic epiretinal membrane[J]. Sci Rep, 2017, 7: 44266. doi:10.1038/srep44266.
[39] Maruichi M, Oku H, Takai S, et al. Measurement of activities in two different angiotensin II generating systems, chymase and angiotensin-converting enzyme, in the vitreous fluid of vitreoretinal diseases: a possible involvement of chymase in the pathogenesis of macular hole patients[J]. Curr Eye Res, 2004, 29(4/5): 321-325. doi:10.1080/02713680490516161.
[40] Bringmann A, Wiedemann P. Involvement of Müller glial cells in epiretinal membrane formation[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2009, 247(7): 865-883. doi:10.1007/s00417-009-1082-x.
[41] Minchiotti S, Stampachiacchiere B, Micera A, et al. Human idiopathic epiretinal membranes express NGF and NGF receptors[J]. Retina(Philadelphia, Pa), 2008, 28(4): 628-637. doi:10.1097/IAE.0b013e31815ec275.
[42] Harada C, Mitamura Y, Harada T. The role of cytokines and trophic factors in epiretinal membranes: involvement of signal transduction in glial cells[J]. Prog Retin Eye Res, 2006, 25(2): 149-164. doi:10.1016/j.preteyeres.2005.09.001.
[43] Yang Y, Yan YN, Wang YX, et al. Ten-year cumulative incidence of epiretinal membranes assessed on fundus photographs. The Beijing Eye Study 2001/2011[J]. PLoS One, 2018, 13(4): e0195768. doi:10.1371/journal.pone.0195768.
[44] 曾庆华. 中医眼科学[M]. 北京: 中国中医药出版社, 2007.
[45] Bertelmann T, Sekundo W, Strodthoff S, et al. Intravitreal functional plasminogen in eyes with branch retinal vein occlusion[J]. Ophthalmic Res, 2014, 52(2): 74-80. doi:10.1159/000362340.
[46] Unal M, Peyman GA. The efficacy of plasminogen-urokinase combination in inducing posterior vitreous detachment[J]. Retina(Philadelphia, Pa), 2000, 20(1): 69-75. doi:10.1097/00006982-200001000-00013.
[47] Lee YS,Wang NK,Chen YP, et al. Plasmin enzyme-assisted vitrectomy in pediatric patients with vitreoretinal diseases. Ophthalmic Res[J]. Ophthalmic Res,2016,56(4):193-201. doi: 10.1159/000447406.
[48] Tuuminen R, Loukovaara S. Statin medication in patients with epiretinal membrane is associated with low intravitreal EPO, TGF-beta-1, and VEGF levels[J]. Clin Ophthalmol, 2016, 10: 921-928. doi:10.2147/OPTH.S105686.
[49] Machemer R. The surgical removal of epiretinal macular membranes(macular puckers)(author's transl)[J]. Klin Monbl Augenheilkd, 1978, 173(1): 36-42.
[50] Hosoda Y, Ooto S, Hangai M, et al. Foveal photoreceptor deformation as a significant predictor of postoperative visual outcome in idiopathic epiretinal membrane surgery[J]. Invest Ophthalmol Vis Sci, 2015, 56(11): 6387-6393. doi:10.1167/iovs.15-16679.
[51] Gozawa M, Takamura Y, Miyake S, et al. Comparison of subconjunctival scarring after microincision vitrectomy surgery using 20-, 23-, 25- and 27-gauge systems in rabbits[J]. Acta Ophthalmol, 2017, 95(7): e602-e609. doi:10.1111/aos.13459.
[52] Rizzo S, Barca F, Caporossi T, et al. Twenty-seven-gauge vitrectomy for various vitreoretinal diseases[J]. Retina(Philadelphia, Pa), 2015, 35(6): 1273-1278. doi:10.1097/IAE.0000000000000545.
[53] Park DH, Shin JP, Kim SY. Surgically induced astigmatism in combined phacoemulsification and vitrectomy; 23-gauge transconjunctival sutureless vitrectomy versus 20-gauge standard vitrectomy[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2009, 247(10): 1331-1337. doi:10.1007/s00417-009-1109-3.
[54] Kim M, Park YS, Lee DH, et al. Comparison of surgical outcome of 23-gauge and 25-gauge microincision vitrectomy surgery for management of idiopathic epiretinal membrane in pseudophakic eyes[J]. Retina(Philadelphia, Pa), 2015, 35(10): 2115-2120. doi:10.1097/IAE.0000000000000598.
[55] Sandali O, El Sanharawi M, Lecuen N, et al. 25-, 23-, and 20-gauge vitrectomy in epiretinal membrane surgery: a comparative study of 553 cases[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2011, 249(12): 1811-1819. doi:10.1007/s00417-011-1752-3.
[56] Haas A, Seidel G, Steinbrugger I, et al. Twenty-three-gauge and 20-gauge vitrectomy in epiretinal membrane surgery[J]. Retina(Philadelphia, Pa), 2010, 30(1): 112-116. doi:10.1097/IAE.0b013e3181b32ebf.
[57] Naruse S, Shimada H, Mori R. 27-gauge and 25-gauge vitrectomy day surgery for idiopathic epiretinal membrane[J]. BMC Ophthalmol, 2017, 17(1): 188. doi:10.1186/s12886-017-0585-1.
[58] Hamoudi H, Correll Christensen U, La Cour M. Epiretinal membrane surgery: an analysis of 2-step sequential- or combined phacovitrectomy surgery on refraction and macular anatomy in a prospective trial[J]. Acta Ophthalmol, 2018, 96(3): 243-250. doi:10.1111/aos.13572.
[59] Kofod MC, Ulrik C. Deferral of surgery for epiretinal membranes: Is it safe? Results of a randomised controlled trial[J]. British Journal of Ophthalmology, 2016,100(5):688-692.doi: 10.1136/bjophthalmol-2015-307301.
[60] 王道光, 刘冬梅, 毕宏生. 三焦点人工晶体植入超长眼轴白内障患者一例报告[J]. 山东大学耳鼻喉眼学报, 2018, 32(6): 117-118. doi:10.6040/j.issn.1673-3770.0.2017.371. WANG Daoguang, LIU Dongmei, BI Hongsheng. A case of trifocal intraocular lens implantation in patients with over-long axial cataract[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(6): 117-118. doi:10.6040/j.issn.1673-3770.0.2017.371.
[61] Braga-Mele R, Chang D, Dewey S, et al. Multifocal intraocular lenses: relative indications and contraindications for implantation[J]. J Cataract Refract Surg, 2014, 40(2): 313-322. doi:10.1016/j.jcrs.2013.12.011.
[62] Hadayer A, Jusufbegovic D, Schaal S. Retinal detachment repair through multifocal intraocular lens- overcoming visualization challenge of the peripheral Retina[J]. Int J Ophthalmol, 2017, 10(6): 1008-1010. doi:10.18240/ijo.2017.06.27.
[63] Gibran SK, Flemming B, Stappler T, et al. Peel and peel again[J]. British Journal of Ophthalmology, 2008, 92(3):373-377.doi: 10.1051/0004-6361:20020179.
[64] 唐唯, 李元彬. 屈光性白内障手术新进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 149-158. doi:10.6040/j.issn.1673-3770.0.2018.325. TANG Wei, LI Yuanbin. New progress in refractive cataract surgery[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 149-158. doi:10.6040/j.issn.1673-3770.0.2018.325.
[65] Enaida H, Sakamoto T, Hisatomi T, et al. Morphological and functional damage of the Retina caused by intravitreous indocyanine green in rat eyes[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2002, 240(3): 209-213. doi:10.1007/s00417-002-0433-7.
[66] Lüke M, Januschowski K, Beutel J, et al. Electrophysiological effects of Brilliant Blue G in the model of the isolated perfused vertebrate Retina[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2008, 246(6): 817-822. doi:10.1007/s00417-007-0761-8.
[67] Manousaridis K, Peter S, Mennel S. 20 g PPV with indocyanine green-assisted ILM peeling versus 23 g PPV with brilliant blue G-assisted ILM peeling for epiretinal membrane[J]. Int Ophthalmol, 2016, 36(3): 407-412. doi:10.1007/s10792-015-0148-5.
[68] Lubiński W, Gosawski W, Krzystolik K, et al. Assessment of macular function, structure and predictive value of pattern electroretinogram parameters for postoperative visual acuity in patients with idiopathic epimacular membrane[J]. Doc Ophthalmol, 2016, 133(1): 21-30. doi:10.1007/s10633-016-9543-0.
[69] Lee PY, Cheng KC, Wu WC. Anatomic and functional outcome after surgical removal of idiopathic macular epiretinal membrane[J]. Kaohsiung J Med Sci, 2011, 27(7): 268-275. doi:10.1016/j.kjms.2011.02.001.
[70] Harris S, Wykoff C C, Shah A R. Five-Year Outcomes of Surgically Treated Symptomatic Epiretinal Membranes With and Without Internal Limiting Membrane Peeling[J]. Ophthalmic Surgery, Lasers and Imaging Retina, 2018, 49(5):296-302. doi: 10.3928/23258160-20180501-02.
[71] de Novelli FJ, Goldbaum M, Monteiro MLR, et al. Recurrence rate and need for reoperation after surgery with or without internal limiting membrane removal for the treatment of the epiretinal membrane[J]. Int J Retin Vitr, 2017, 3: 48. doi:10.1186/s40942-017-0101-z.
[72] Gaber R, You QS, Muftuoglu IK, et al. Characteristics of epiretinal membrane remnant edge by optical coherence tomography after pars Plana vitrectomy[J]. Retina(Philadelphia, Pa), 2017, 37(11): 2078-2083. doi:10.1097/IAE.0000000000001466.
[73] Lee C, Lee MW, Choi EY, et al. Comparison of individual retinal layer thicknesses after epiretinal membrane surgery with or without internal limiting membrane peeling[J]. J Ophthalmol, 2018, 2018(8): 1256781. doi:10.1155/2018/1256781.
[74] Oh HN, Lee JE, Kim HW, et al. Clinical outcomes of double staining and additional ILM peeling during ERM surgery[J]. Korean J Ophthalmol, 2013, 27(4): 256-260. doi:10.3341/kjo.2013.27.4.256.
[75] Chang YC, Lee CL, Chen KJ, et al. Comparison of visual outcome and morphologic change between different surgical techniques in idiopathic epiretinal membrane surgery[J]. J Ophthalmol, 2018, 2018: 4595062. doi:10.1155/2018/4595062.
[1] 张钰曲毅. 眼弓形体病的发病机制及防治研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 70-76.
[2] 宋晴 宋西成. 安罗替尼联合治疗在肿瘤治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 106-112.
[3] 张可人, 雷春燕, 张美霞. 眼睑松弛综合征伴阻塞性睡眠呼吸暂停1例[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 125-128.
[4] 王媚 李志海. 喉癌干细胞:克服多药耐药性的潜在治疗靶点[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 120-128.
[5] 熊攀辉,沈暘,杨玉成. 基于表型和内在型的慢性鼻窦炎诊治进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 15-19.
[6] 王欢,胡俐,余洪猛. 慢性鼻窦炎相关嗅觉功能障碍研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 43-49.
[7] 谷钰,万鑫,肖自安. 中性粒细胞和嗜酸性粒细胞在慢性鼻窦炎中的相互影响及临床治疗思考[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 56-63.
[8] 林海,朱莹,张维天. 慢性鼻窦炎发病中离子通道作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 64-70.
[9] 李佳倪,朱冬冬,孟粹达. 表观遗传学在慢性鼻窦炎伴鼻息肉发病机制中的作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 84-91.
[10] 曾宪廷,王广科,孙占伟,武天义,李世超,王卫卫. 伴咽喉反流的难治性鼻窦炎术后应用质子泵抑制剂的疗效观察[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 189-194.
[11] 张陶然,王薇,李明铭,黄映湘. IVR治疗mCNV患者黄斑中心凹下脉络膜厚度分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 68-71.
[12] 韩莹莹,李延忠. 阻塞性睡眠呼吸暂停低通气综合征与亚临床动脉粥样硬化[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 126-132.
[13] 狄宇,李莹. 干眼炎症反应机制及抗炎治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 144-150.
[14] 庞冲,边赛男,张冰,尹旭,陆颖霞,叶鹏飞,王湛,赵晶,高彦,关凯. 儿童过敏性鼻炎粉尘螨特异性舌下免疫治疗短期疗效评估[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 70-74.
[15] 李孟辉,郅莉莉,戚凯文,王珊珊,高倩,步美玲,姜荷云,冯绛楠,王金荣. 皮下免疫治疗对单一尘螨和合并霉菌过敏儿童哮喘的临床研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 75-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邓基波,孙奉乾,许安廷 . 大前庭导水管综合征[J]. 山东大学耳鼻喉眼学报, 2006, 20(2): 116 -118 .
[2] 周子宁,金国威 . 喉气管狭窄的预防和治疗进展[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 462 -465 .
[3] 周斌,李滨 . 鼻内窥镜下鼻窦鼻息肉手术75例疗效观察[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 24 -26 .
[4] 徐赛男,杨雷 . 红霉素促进鼻息肉上皮细胞凋亡的实验研究[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 27 -29 .
[5] 张玉光,韩旭光,张华,王旭,徐湘辉 . 改良穿透性角膜移植术治疗真菌性角膜炎[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 94 -95 .
[6] 刘联合 . 颈深部脓肿37例[J]. 山东大学耳鼻喉眼学报, 2008, 22(2): 180 -181 .
[7] 谢治年 ,姬长友 . RNA干扰及其在喉鳞癌研究中的应用[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 200 -203 .
[8] 乔 艺,倪关森,陈文文 . 改良悬雍垂腭咽成形术联合鼻腔手术治疗阻塞性睡眠呼吸暂停综合征38例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 206 -208 .
[9] 汪晓锋,林 昶,程金妹 . 不同龄小鼠内耳中ABAD的表达及临床意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 207 -211 .
[10] 凡启军,黄治物,梅 玲,肖伯奎 . 荧光定量PCR测定水杨酸钠作用后大鼠耳蜗基因的表达[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 212 -214 .