山东大学耳鼻喉眼学报 ›› 2020, Vol. 34 ›› Issue (6): 36-41.doi: 10.6040/j.issn.1673-3770.0.2020.053

• • 上一篇    



  1. 武汉大学人民医院 肿瘤科, 湖北 武汉 430000
  • 发布日期:2021-01-11
  • 通讯作者: 徐细明. E-mail:doctorxu120@aliyun.com

Changes in and prognostic value of the inflammatory index before and after concurrent chemoradiotherapy for nasopharyngeal carcinoma

FAN Li, LI Yue, XU Ximing   

  1. Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, China
  • Published:2021-01-11

摘要: 目的 探讨局部晚期鼻咽癌同步放化疗前后外周血中性粒细胞与淋巴细胞比(NLR)和血小板与淋巴细胞比(PLR)的变化及对鼻咽癌复发的预测作用。 方法 回顾性分析初诊为局部晚期鼻咽癌并行同步放化疗229例患者病历资料,记录同步放化疗前后患者的中性粒细胞、血小板和淋巴细胞值,计算相应的NLR和PLR、ΔNLR和ΔPLR,使用受试者工作特征曲线(ROC),确定NLR和PLR、ΔNLR和ΔPLR的最佳临界值,并根据最佳临界值将ΔNLR和ΔPLR分别分为高低水平两组;使用Cox风险模型分析和Kaplan-Meier分析确定肿瘤复发的独立危险因素以及ΔNLR和ΔPLR对生存的影响。 结果 以肿瘤复发为结果,NLR和PLR、ΔNLR和ΔPLR的ROC曲线下面积(AUC)分别为0.680、0.678、0.854和0.730, 最佳临界值分别为2.730、135.550、4.982和122.553;单因素分析显示:T分期、N分期、临床分期、诱导/辅助化疗史NLR、PLR、ΔNLR、ΔPLR为鼻咽癌复发的相关因素,进一步行多因素分析提示T分期、N分期、ΔNLR、ΔPLR是鼻咽癌复发的独立危险因素;生存分析显示,ΔHNLR和ΔHPLR组的2年无复发生存率均低于ΔLNLR和ΔLPLR组(ΔHNLR vs. ΔLNLR=0.488 vs. 0.993;ΔHPLR vs. ΔLPLR=0.476 vs. 0.935),ΔHNLR和ΔHPLR组的中位无复发生存时间均为23个月。 结论 局部晚期鼻咽癌患者的NLR和PLR总体水平在同步放化疗后有所增加,治疗前后NLR和PLR差值越大肿瘤预后越差,且ΔNLR和ΔPLR可作为肿瘤复发的预测指标。

关键词: 鼻咽癌, 同步放化疗, 中性粒细胞与淋巴细胞比, 血小板与淋巴细胞比, 复发

Abstract: Objective To investigate the effect of the neutrophil-lymphocyte ratio(NLR)and platelet-lymphocyte ratio(PLR)in peripheral blood on the prognosis of nasopharyngeal carcinoma(NPC)before and after concurrent chemoradiotherapy. Methods Pre-/post-treatment and changes in neutrophil, platelet, and lymphocyte levels of 229 patients who were diagnosed with locally advanced NPC and received concurrent chemoradiotherapy in Renmin Hospital of Wuhan University were retrospectively analyzed. A receiver operating characteristic(ROC)analysis was performed to determine the optimal cutoff values of NLR, PLR, ΔNLR, and ΔPLR, and the patients were then divided into lower and higher groups according to the optimal cutoff values of ΔNLR and ΔPLR. A Kaplan-Meier analysis and Cox risk model were used to identify independent predictors of recurrence and prognosis. Results The areas under the ROC curve of PLR, NLR, ΔNLR, and ΔPLR in the diagnosis of tumor recurrence were 0.680, 0.678, 0.854, and 0.730, respectively, and the optimal cut-off values for each parameter were 2.730, 135.550, 4.982, and 122.553, respectively. Univariate analysis showed that TNM stages, clinical stages, PLR and NLR, ΔNLR, and ΔPLR were correlated with the recurrence of NPC, whereas the Cox regression model suggested that TNM stages, ΔNLR, and ΔPLR were independent risk factors for the recurrence of NPC. Kaplan-Meier analysis found that the 2-year recurrence-free survival rates of the ΔHNLR and ΔHPLR groups were lower than those of the ΔLNLR and ΔLPLR groups(ΔHNLR vs. ΔLNLR=0.488 vs. 0.993; ΔHPLR vs. ΔLPLR=0.476 vs. 0.935), and that the median recurrence-free survival time for both the ΔHNLR and ΔHPLR groups was 23 months. Conclusion Both NLR and PLR in patients with locally advanced NPC increased after concurrent chemoradiotherapy, and poorer prognosis was correlated with higher ΔNLR and ΔPLR values. Therefore, ΔNLR and ΔPLR can be used to assess risk for tumor recurrence in patients with locally advanced NPC.

Key words: Nasopharyngeal carcinoma, Concurrent chemoradiotherapy, Neutrophil-lymphocyte ratio, Platelet-lymphocyte ratio, Recurrence


  • R739.6
[1] Shalapour S, Karin M. Pas de deux: control of anti-tumor immunity by cancer-associated inflammation[J]. Immunity, 2019, 51(1): 15-26. doi:10.1016/j.immuni.2019.06.021.
[2] Dolan RD, Laird BJA, Klepstad P, et al. An exploratory study examining the relationship between performance status and systemic inflammation frameworks and cytokine profiles in patients with advanced cancer[J]. Medicine(Baltimore), 2019, 98(37): e17019. doi:10.1097/MD.0000000000017019.
[3] Derer A, Frey B, Fietkau R, et al. Immune-modulating properties of ionizing radiation: rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors[J]. Cancer Immunol Immunother, 2016, 65(7): 779-786. doi:10.1007/s00262-015-1771-8.
[4] Chajon E, Castelli J, Marsiglia H, et al. The synergistic effect of radiotherapy and immunotherapy: a promising but not simple partnership[J]. Crit Rev Oncol, 2017, 111: 124-132. doi:10.1016/j.critrevonc.2017.01.017.
[5] Toulany M. Targeting DNA double-strand break repair pathways to improve radiotherapy response[J]. Genes(Basel), 2019, 10(1): E25. doi:10.3390/genes10010025.
[6] Ma YT, Pitt JM, Li QQ, et al. The renaissance of anti-neoplastic immunity from tumor cell demise[J]. Immunol Rev, 2017, 280(1): 194-206. doi:10.1111/imr.12586.
[7] Lumniczky K, Sáfrány G. The impact of radiation therapy on the antitumor immunity: local effects and systemic consequences[J]. Cancer Lett, 2015, 356(1): 114-125. doi:10.1016/j.canlet.2013.08.024.
[8] Candéias SM, Testard I. The many interactions between the innate immune system and the response to radiation[J]. Cancer Lett, 2015, 368(2): 173-178. doi:10.1016/j.canlet.2015.02.007.
[9] Murata M. Inflammation and cancer[J]. Environ Health Prev Med, 2018, 23(1): 50. doi:10.1186/s12199-018-0740-1.
[10] Shalapour S, Lin XJ, Bastian IN, et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity[J]. Nature, 2017, 551(7680): 340-345. doi:10.1038/nature24302.
[11] Dolan RD, McSorley ST, Horgan PG, et al. The role of the systemic inflammatory response in predicting outcomes in patients with advanced inoperable cancer: Systematic review and meta-analysis[J]. Crit Rev Oncol Hematol, 2017, 116: 134-146. doi:10.1016/j.critrevonc.2017.06.002.
[12] Yodying H, Matsuda A, Miyashita M, et al. Prognostic significance of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in oncologic outcomes of esophageal cancer: a systematic review and meta-analysis[J]. Ann Surg Oncol, 2016, 23(2): 646-654. doi:10.1245/s10434-015-4869-5.
[13] Zhao Z, Zhao XR, Lu JJ, et al. Prognostic roles of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in ovarian cancer: a meta-analysis of retrospective studies[J]. Arch Gynecol Obstet, 2018, 297(4): 849-857. doi:10.1007/s00404-018-4678-8.
[14] Lorente L. New prognostic biomarkers of mortality in patients undergoing liver transplantation for hepatocellular carcinoma[J]. World J Gastroenterol, 2018, 24(37): 4230-4242. doi:10.3748/wjg.v24.i37.4230.
[15] Rossi S, Basso M, Strippoli A, et al. Are markers of systemic inflammation good prognostic indicators in colorectal cancer?[J]. Clin Colorectal Cancer, 2017, 16(4): 264-274. doi:10.1016/j.clcc.2017.03.015. 019, 26(1): 31-47. doi:10.1111/iju.13801.
[16] Ohno Y. Role of systemic inflammatory response markers in urological malignancy[J]. International journal of urology: official journal of the Japanese Urological Association,2019,26(1):31-47. doi: 10.1111/iju.13801.
[17] Su L, Zhang MW, Zhang WJ, et al. Pretreatment hematologic markers as prognostic factors in patients with nasopharyngeal carcinoma: a systematic review and meta-analysis[J]. Medicine(Baltimore), 2017, 96(11): e6364. doi:10.1097/MD.0000000000006364.
[18] Sridharan V, Margalit DN, Lynch SA, et al. Definitive chemoradiation alters the immunologic landscape and immune checkpoints in head and neck cancer[J]. Br J Cancer, 2016, 115(2):252-260. doi: 10.1038/bjc.2016.166.
[19] Burnette BC, Liang H, Lee Y, et al. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity[J]. Cancer Res. 2011, 71(7):2488-2496. doi: 10.1158/0008-5472.CAN-10-2820.
[20] Chen J, Cao Y, Markelc B, et al. Type Ⅰ IFN protects cancer cells from CD8+ T cell-mediated cytotoxicity after radiation[J]. I Clin Invest, 2019, 129(10):4224-4238. doi: 10.1172/JCI127458.
[21] Schuler PJ, Harasymczuk M, Schilling B, et al. Effects of adjuvant chemoradiotherapy on the frequency and function of regulatory T cells in patients with head and neck cancer[J]. Clin Cancer Res, 2013, 19(23):6585-6596. doi: 10.1158/1078-0432.CCR-13-0900.
[22] Al-Taei S, Banner R, Powell N, et al. Decreased HPV-specific T cell responses and accumulation of immunosuppressive influences in oropharyngeal cancer patients following radical therapy[J]. Cancer Immunol Immunother, 2013, 62(12):1821-1830.
[23] van Meir H, Nout RA, Welters MJP, et al. Impact of(chemo)radiotherapy on immune cell composition and function in cervical cancer patients[J]. Oncoimmunology, 2017,6(2):e1267095. doi: 10.1080/2162402X.2016.1267095.
[24] Wennerberg E, Lhuillier C, Vanpouille-Box C, et al. Barriers to radiation-induced In situ tumor vaccination[J]. Front Immunol, 2017, 8: 229. doi:10.3389/fimmu.2017.00229.
[25] Menon H, Ramapriyan R, Cushman TR, et al. Role of radiation therapy in modulation of the tumor stroma and microenvironment[J]. Front Immunol, 2019, 10: 193. doi:10.3389/fimmu.2019.00193.
[26] Wang H, Jiang H, van De Gucht M, et al. Hypoxic radioresistance: can ROS be the key to overcome it?[J]. Cancers(Basel), 2019, 11(1): E112. doi:10.3390/cancers11010112.
[27] Rückert M, Deloch L, Fietkau R, et al. Immune modulatory effects of radiotherapy as basis for well-reasoned radioimmunotherapies[J]. Strahlenther Onkol, 2018, 194(6): 509-519. doi:10.1007/s00066-018-1287-1.
[28] McLaren PJ, Bronson NW, Hart KD, et al. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios can predict treatment response to neoadjuvant therapy in esophageal cancer[J]. J Gastrointest Surg, 2017, 21(4): 607-613. doi:10.1007/s11605-016-3351-4.
[29] Stöth M, Freire Valls A, Chen MY, et al. Splenectomy reduces lung metastases and tumoral and metastatic niche inflammation[J]. Int J Cancer, 2019, 145(9): 2509-2520. doi:10.1002/ijc.32378.
[30] Ocana A, Nieto-Jiménez C, Pandiella A, et al. Neutrophils in cancer: prognostic role and therapeutic strategies[J]. Mol Cancer, 2017, 16(1): 137. doi:10.1186/s12943-017-0707-7.
[31] Pucci F, Rickelt S, Newton AP, et al. PF4 promotes platelet production and lung cancer growth[J]. Cell Rep, 2016, 17(7): 1764-1772. doi:10.1016/j.celrep.2016.10.031.
[32] Ménétrier-Caux C, Ray-Coquard I, Blay JY, et al. Lymphopenia in cancer patients and its effects on response to immunotherapy: an opportunity for combination with cytokines?[J]. J Immunother Cancer, 2019, 7(1): 85. doi:10.1186/s40425-019-0549-5.
[1] 陈建勇, 孙夏雨, 沈佳丽, 汪玮, 王璐, 贺宽, 张勤, 马孝宝, 沈敏, 陈向平, 杨军. 原发性良性阵发性位置性眩晕患者VEMP异常率的临床观察[J]. 山东大学耳鼻喉眼学报, 2020, 34(5): 51-55.
[2] 韩继波,邹游,杨蕊,陶泽璋. Notch受体调控上皮-间质转化对鼻咽癌细胞顺铂耐药的影响[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 105-110.
[3] 吕静荣,陈淳,马衍,谢晋. 儿童分化型甲状腺癌的临床特征及危险因素分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 88-94.
[4] 陈雪松,付伟伟,刘江涛. 中性粒细胞淋巴细胞比值和血小板淋巴细胞比值对调强放疗鼻咽癌患者的预后价值[J]. 山东大学耳鼻喉眼学报, 2020, 34(1): 50-53.
[5] 谢书华, 杨竹梅, 刘慧茹, 董晶. NLR、LMR、PLR预测慢性鼻窦炎鼻内镜术后复发价值[J]. 山东大学耳鼻喉眼学报, 2020, 34(1): 54-57.
[6] 张剑利,陈伟雄,陈瑞开,邝德斌,庞艺施. 鼻咽癌放疗后远期吞咽功能的纤维喉镜评估[J]. 山东大学耳鼻喉眼学报, 2019, 33(6): 56-59.
[7] 李林,张衡,冼宇飞,盛晓丽. 长链非编码RNA在鼻咽癌组织中表达及其生物学功能研究[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 69-72.
[8] 潘晓菲,王军,肖洋,马丽晶. LncRNA CTB-147C22.8对复发性呼吸道乳头状瘤细胞侵袭的影响[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 66-70.
[9] 陈慧君,宋圣花,周涵,董伟达,乔明哲,陈曦,徐进,林子萍,邢光前. 血小板与淋巴细胞比值对喉癌复发的预测价值[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 106-110.
[10] 姜彦. 鼻咽癌复发及鼻内镜外科手术的应用[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 1-11.
[11] 陈冬平,杨致欢,张炎,方楠,齐斌. 复发鼻咽癌手术治疗地位的思考[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 12-16.
[12] 徐文瑞,姜彦. 复发鼻咽癌挽救性手术方法研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 35-38.
[13] 雷文斌,刘其洪. CO2激光手术治疗复发性呼吸道乳头状瘤[J]. 山东大学耳鼻喉眼学报, 2018, 32(6): 8-12.
[14] 张彩霞,刘阳云,江文,刘庚勋,曹杭,陈琼,张纪帅. 一氧化氮对鼻咽癌CNE-2细胞株化疗增敏效应的研究[J]. 山东大学耳鼻喉眼学报, 2017, 31(5): 72-78.
[15] 周毅波,龚小蓉,于锋. MiR-150调控Nanog对鼻咽癌侧群细胞增殖、侵袭的影响[J]. 山东大学耳鼻喉眼学报, 2017, 31(5): 79-84.
Full text



No Suggested Reading articles found!