山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (5): 162-174.doi: 10.6040/j.issn.1673-3770.0.2022.306

• 综述 • 上一篇    

SARS-CoV-2感染后嗅觉功能障碍治疗的研究进展

金婧1, 冷辉2   

  1. 1.辽宁中医药大学 研究生学院, 辽宁 沈阳 110032;
    2.辽宁中医药大学附属医院 耳鼻咽喉头颈科, 辽宁 沈阳 110000
  • 发布日期:2023-10-13
  • 通讯作者: 冷辉. E-mail:lengh1976@163.com

Progress in treatment of olfactory dysfunction following SARS-Cov-2

JIN Jing1, LENG Hui2   

  1. 1. Graduate School Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning, China2. Department of Otorhinolaryngology & Head and Neck Surgery, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110000, Liaoning, China
  • Published:2023-10-13

摘要: 嗅觉功能障碍(olfactory dysfunction, OD)被认为是新型冠状病毒肺炎的主要症状之一。目前,COVID-19相关的OD的发病机制尚不明确,对其患者暂无特异性治疗手段。论文通过回顾近年来OD的相关文献,结合目前COVID-19及COVID-19相关的OD的治疗方法,从安全咨询、嗅觉训练、药物治疗、针灸、中医药、日本汉方药等方面对相关治疗方案进行总结和比较,探讨其在临床应用和开发新的治疗方法方面的挑战,以期为临床治疗COVID-19相关的OD提供参考和帮助。

关键词: 嗅觉功能障碍, 新型冠状病毒, 治疗, 嗅觉训练, 研究进展

Abstract: Olfactory dysfunction(OD)is among the main symptoms of coronavirus disease 2019(COVID-19). Currently, the pathogenesis of OD associated with COVID-19 remains unclear, and specific treatment is unavailable. In this paper, we present a review of recent literature that describes OD, in addition to current treatment strategies for COVID-19 and COVID-19-induced OD. We have summarized the therapeutic approaches and compared the treatment methods of safety consultation, olfactory training, drug treatment, acupuncture, traditional Chinese medicine,Japanese traditional Chinese medicine and others. Furthermore, we discuss the challenges in clinical application and future development to serve as guidelines for the clinical management of COVID-19-induced OD.

Key words: Olfactory dysfunction, Novel coronavirus, Treatment, Olfactory training, Research progression

中图分类号: 

  • R765.6+3
[1] Lerner DK, Garvey KL, Arrighi-Allisan AE, et al. Clinical features of Parosmia associated with COVID-19 infection[J]. Laryngoscope, 2022, 132(3): 633-639. doi:10.1002/lary.29982
[2] Huart C, Philpott C, Konstantinidis I, et al. Comparison of COVID-19 and common cold chemosensory dysfunction[J]. Rhinology, 2020, 58(6): 623-625. doi:10.4193/Rhin20.251
[3] Wei G, Gu J, Gu Z, et al. Olfactory dysfunction in patients with coronavirus disease 2019: a review[J]. Front Neurol, 2022, 12:783249
[4] Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia[J]. Sci Adv, 2020, 6(31):eabc5801. doi:10.1126/sciadv.abc5801
[5] Chen M, Shen W, Rowan NR, et al. Elevated ACE-2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication[J]. Eur Respir J, 2020, 56(3):2001948. doi:10.1183/13993003.01948-2020
[6] Ohkubo K, Lee CH, Baraniuk JN, et al. Angiotensin-converting enzyme in the human nasal mucosa[J]. Am J Respir Cell Mol Biol, 1994, 11(2):173-180. doi:10.1165/ajrcmb.11.2.8049077
[7] Ferreira AO, Polonini HC, Dijkers ECF. Postulated adjuvant therapeutic strategies for COVID-19[J]. J Pers Med, 2020, 10(3): 80. doi:10.3390/jpm10030080
[8] Doty RL. Olfactory dysfunction in COVID-19: pathology and long-term implications for brain health[J]. Trends Mol Med, 2022, 28(9): 781-794. doi:10.1016/j.molmed.2022.06.005
[9] van Kessel SAM, Olde Hartman TC, Lucassen PLBJ, et al. Post-acute and long-COVID-19 symptoms in patients with mild diseases: a systematic review[J]. Fam Pract, 2022, 39(1): 159-167. doi:10.1093/fampra/cmab076
[10] Kanjanaumporn J, Aeumjaturapat S, Snidvongs K, et al. Smell and taste dysfunction in patients with SARS-CoV-2 infection: a review of epidemiology, pathogenesis, prognosis, and treatment options[J]. Asian Pac J Allergy Immunol, 2020, 38(2): 69-77. doi:10.12932/AP-030520-0826
[11] Orsucci D, Ienco EC, Nocita G, et al. Neurological features of COVID-19 and their treatment: a review[J]. Drugs Context, 2020, 9: 2020-2025-1. doi:10.7573/dic.2020-5-1
[12] Fortunato F, Martinelli D, Iannelli G, et al. Self-reported olfactory and gustatory dysfunctions in COVID-19 patients: a 1-year follow-up study in Foggia district, Italy[J]. BMC Infect Dis, 2022, 22(1): 77. doi:10.1186/s12879-022-07052-8
[13] Desai M, Oppenheimer J. The importance of considering olfactory dysfunction during the COVID-19 pandemic and in clinical practice[J]. J Allergy Clin Immunol Pract, 2021, 9(1): 7-12. doi:10.1016/j.jaip.2020.10.036
[14] Addison AB, Wong B, Ahmed T, et al. Clinical Olfactory Working Group consensus statement on the treatment of postinfectious olfactory dysfunction[J]. J Allergy Clin Immunol, 2021, 147(5): 1704-1719. doi:10.1016/j.jaci.2020.12.641
[15] Altundag A, Cayonu M, Kayabasoglu G, et al. Modified olfactory training in patients with postinfectious olfactory loss[J]. Laryngoscope, 2015, 125(8): 1763-1766. doi:10.1002/lary.25245
[16] Levy JM. Treatment recommendations for persistent smell and taste dysfunction following COVID-19-the coming deluge[J]. JAMA Otolaryngol Head Neck Surg, 2020, 146(8): 733. doi:10.1001/jamaoto.2020.1378
[17] Croy I, Olgun S, Mueller L, et al. Peripheral adaptive filtering in human olfaction? Three studies on prevalence and effects of olfactory training in specific anosmia in more than 1600 participants[J]. Cortex, 2015, 73: 180-187. doi:10.1016/j.cortex.2015.08.018
[18] Reichert JL, Schöpf V. Olfactory loss and regain: lessons for neuroplasticity[J]. Neuroscientist, 2018, 24(1): 22-35. doi:10.1177/1073858417703910
[19] Al Aïn S, Poupon D, Hétu S, et al. Smell training improves olfactory function and alters brain structure[J]. NeuroImage, 2019, 189: 45-54. doi:10.1016/j.neuroimage.2019.01.008
[20] Hummel T, Whitcroft KL, Andrews P, et al. Position paper on olfactory dysfunction[J]. Rhinology, 2016, 56(1): 1-30. doi:10.4193/Rhino16.248
[21] Hopkins C, Alanin M, Philpott C, et al. Management of new onset loss of sense of smell during the COVID-19 pandemic-BRS Consensus Guidelines[J]. Clin Otolaryngol, 2021, 46(1): 16-22. doi:10.1111/coa.13636
[22] Whitcroft KL, Hummel T. Olfactory dysfunction in COVID-19: diagnosis and management[J]. JAMA, 2020, 323(24): 2512-2514. doi:10.1001/jama.2020.8391
[23] 王欢, 胡俐, 余洪猛. 慢性鼻窦炎相关嗅觉功能障碍研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 43-49. doi:10.6040/j.issn.1673-3770.0.2022.041 WANG Huan, HU Li, YU Hongmeng. Research progress of olfactory dysfunction in chronic rhinosinusitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 43-49. doi:10.6040/j.issn.1673-3770.0.2022.041
[24] Yan CH, Overdevest JB, Patel ZM. Therapeutic use of steroids in non-chronic rhinosinusitis olfactory dysfunction: a systematic evidence-based review with recommendations[J]. Int Forum Allergy Rhinol, 2019, 9(2): 165-176. doi:10.1002/alr.22240
[25] Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression[J]. Lancet, 2020, 395(10229): 1033-1034. doi:10.1016/S0140-6736(20)30628-0
[26] Kirschenbaum D, Imbach LL, Ulrich S, et al. Inflammatory olfactory neuropathy in two patients with COVID-19[J]. Lancet, 2020, 396(10245): 166. doi:10.1016/S0140-6736(20)31525-7
[27] Huang R, Zhu CW, Xue LY, et al. Corticosteroid therapy is associated with the delay of SARS-CoV-2 clearance in COVID-19 patients[J]. Eur J Pharmacol, 2020, 889: 173556. doi:10.1016/j.ejphar.2020.173556
[28] Yang JW, Yang L, Luo RG, et al. Corticosteroid administration for viral pneumonia: COVID-19 and beyond[J]. Clin Microbiol Infect, 2020, 26(9): 1171-1177. doi:10.1016/j.cmi.2020.06.020
[29] Seo MY, Lee SH. Treatment and prognosis of COVID-19 associated olfactory and gustatory dysfunctions[J]. J Pers Med, 2021, 11(10): 1037. doi:10.3390/jpm11101037
[30] Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271-280.e8. doi:10.1016/j.cell.2020.02.052
[31] Pormohammad A, Monych NK, Turner RJ. Zinc and SARS-CoV-2: a molecular modeling study of Zn interactions with RNA-dependent RNA-polymerase and 3C-like proteinase enzymes[J]. Int J Mol Med, 2021, 47(1): 326-334. doi:10.3892/ijmm.2020.4790
[32] Razeghi Jahromi S, Moradi Tabriz H, Togha M, et al. The correlation between serum selenium, zinc, and COVID-19 severity: an observational study[J]. BMC Infect Dis, 2021, 21(1): 899. doi:10.1186/s12879-021-06617-3
[33] Al Sulaiman K, Aljuhani O, Al Shaya AI, et al. Evaluation of zinc sulfate as an adjunctive therapy in COVID-19 critically ill patients: a two center propensity-score matched study[J]. Crit Care, 2021, 25(1): 363. doi:10.1186/s13054-021-03785-1
[34] Jiang Y, Gu LQ, Zhang ZL, et al. Severe zinc deficiency causes the loss and apoptosis of olfactory ensheathing cells(OECs)and olfactory deficit[J]. J Mol Neurosci, 2021, 71(4): 869-878. doi:10.1007/s12031-020-01709-2
[35] Hura N, Xie DX, Choby GW, et al. Treatment of post-viral olfactory dysfunction: an evidence-based review with recommendations[J]. Int Forum Allergy Rhinol, 2020, 10(9): 1065-1086. doi:10.1002/alr.22624
[36] Abdelmaksoud AA, Ghweil AA, Hassan MH, et al. Olfactory disturbances as presenting manifestation among Egyptian patients with COVID-19: possible role of zinc[J]. Biol Trace Elem Res, 2021, 199(11): 4101-4108. doi:10.1007/s12011-020-02546-5
[37] Reinhold D, Brocke S. The differential roles of zinc in immune responses and their potential implications in antiviral immunity against SARS-CoV-2[J]. Clin Nutr, 2021, 40(2): 652. doi:10.1016/j.clnu.2020.12.005
[38] Read SA, Obeid S, Ahlenstiel C, et al. The role of zinc in antiviral immunity[J]. Adv Nutr, 2019, 10(4): 696-710. doi:10.1093/advances/nmz013
[39] Barazzoni R, Bischoff SC, Breda J, et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection[J]. Clin Nutr, 2020, 39(6): 1631-1638. doi:10.1016/j.clnu.2020.03.022
[40] Speakman LL, Michienzi SM, Badowski ME. Vitamins, supplements and COVID-19: a review of currently available evidence[J]. Drugs Context, 2021, 10: 2021-2026-2. doi:10.7573/dic.2021-6-2
[41] Hummel T, Heilmann S, Hüttenbriuk KB. Lipoic acid in the treatment of smell dysfunction following viral infection of the upper respiratory tract[J]. Laryngoscope, 2002, 112(11): 2076-2080. doi:10.1097/00005537-200211000-00031
[42] Dragomanova S, Miteva S, Nicoletti F, et al. Therapeutic potential of alpha-lipoic acid in viral infections, including COVID-19[J]. Antioxidants(Basel), 2021, 10(8): 1294. doi:10.3390/antiox10081294
[43] Torabi A, Mohammadbagheri E, Akbari Dilmaghani N, et al. Proinflammatory cytokines in the olfactory mucosa result in COVID-19 induced anosmia[J]. ACS Chem Neurosci, 2020, 11(13): 1909-1913. doi:10.1021/acschemneuro.0c00249
[44] 陆越悦, 何晗昳, 滕尧树, 等. 新型冠状病毒肺炎的肺外表现: 嗅觉障碍[J]. 中国医学科学院学报, 2021, 43(3): 481-487. doi: 10.3881/j.issn.1000-503X.14014 LU Yueyue, HE Hanyi, TENG Yaoshu, et al. An extrapulmonary manifestation of coronavirus disease 2019: olfactory dysfunction[J]. Acta Academiae Medicinae Sinicae, 2021, 43(3): 481-487. doi: 10.3881/j.issn.1000-503X.14014
[45] Yan CH, Rathor A, Krook K, et al. Effect of Omega-3 supplementation in patients with smell dysfunction following endoscopic sellar and parasellar tumor resection: a multicenter prospective randomized controlled trial[J]. Neurosurgery, 2020, 87(2): E91-E98. doi:10.1093/neuros/nyz559
[46] Hathaway D, Pandav K, Patel M, et al. Omega 3 fatty acids and COVID-19: a comprehensive review[J]. Infect Chemother, 2020, 52(4): 478-495. doi:10.3947/ic.2020.52.4.478
[47] Hernandez AK, Woosch D, Haehner A, et al. Omega-3 supplementation in postviral olfactory dysfunction: a pilot study[J]. Rhinology, 2022, 60(2): 139-144. doi:10.4193/Rhin21.378
[48] Kern RC, Conley DB, Haines GK 3rd, et al. Treatment of olfactory dysfunction, II: studies with minocycline[J]. Laryngoscope, 2004, 114(12): 2200-2204. doi:10.1097/01.mlg.0000149458.21501.6f
[49] Siopi E, Calabria S, Plotkine M, et al. Minocycline restores olfactory bulb volume and olfactory behavior after traumatic brain injury in mice[J]. J Neurotrauma, 2012, 29(2): 354-361. doi:10.1089/neu.2011.2055
[50] Reden J, Herting B, Lill K, et al. Treatment of postinfectious olfactory disorders with minocycline: a double-blind, placebo-controlled study[J]. Laryngoscope, 2011, 121(3): 679-682. doi:10.1002/lary.21401
[51] Izquierdo-Dominguez A, Rojas-Lechuga MJ, Mullol J, et al. Olfactory dysfunction in the COVID-19 outbreak[J]. J Investig Allergol Clin Immunol, 2020, 30(5): 317-326. doi:10.18176/jiaci.0567
[52] Duncan RB, Briggs M. Treatment of uncomplicated anosmia by vitamin A[J]. Arch Otolaryngol, 1962, 75: 116-124. doi:10.1001/archotol.1962.00740040122008
[53] Hummel T, Whitcroft KL, Rueter G, et al. Intranasal vitamin A is beneficial in post-infectious olfactory loss[J]. Eur Arch Otorhinolaryngol, 2017, 274(7): 2819-2825. doi:10.1007/s00405-017-4576-x
[54] Reden J, Lill K, Zahnert T, et al. Olfactory function in patients with postinfectious and posttraumatic smell disorders before and after treatment with vitamin A: a double-blind, placebo-controlled, randomized clinical trial[J]. Laryngoscope, 2012, 122(9): 1906-1909. doi:10.1002/lary.23405
[55] Sousa FA, Machado AS, da Costa JC, et al. Tailored approach for persistent olfactory dysfunction after SARS-CoV-2 infection: A Pilot Study[J]. Ann Otol Rhinol Laryngol, 2023,132(6):657-666. doi:10.1177/00034894221111093
[56] Henkin RI, Velicu I, Papathanassiu A. cAMP and cGMP in human parotid saliva: relationships to taste and smell dysfunction, gender, and age[J]. Am J Med Sci, 2007, 334(6): 431-440. doi:10.1097/MAJ.0b013e3180de4d97
[57] Helman SN, Adler J, Jafari A, et al. Treatment strategies for postviral olfactory dysfunction: a systematic review[J]. Allergy Asthma Proc, 2022, 43(2): 96-105. doi:10.2500/aap.2022.43.210107
[58] Henkin RI, Velicu I, Schmidt L. An open-label controlled trial of theophylline for treatment of patients with hyposmia[J]. Am J Med Sci, 2009, 337(6): 396-406. doi:10.1097/MAJ.0b013e3181914a97
[59] Henkin RI, Schultz M, Minnick-Poppe L. Intranasal theophylline treatment of hyposmia and hypogeusia: a pilot study[J]. Arch Otolaryngol Head Neck Surg, 2012, 138(11): 1064-1070. doi:10.1001/2013.jamaoto.342
[60] Neta FI, Fernandes ACL, Vale AJM, et al. Pathophysiology and possible treatments for olfactory-gustatory disorders in patients affected by COVID-19[J]. Curr Res Pharmacol Drug Discov, 2021, 2: 100035. doi:10.1016/j.crphar.2021.100035
[61] Lee JJ, Peterson AM, Kallogjeri D, et al. Smell Changes and Efficacy of Nasal Theophylline(SCENT)irrigation: a randomized controlled trial for treatment of post-viral olfactory dysfunction[J]. Am J Otolaryngol, 2022, 43(2): 103299. doi:10.1016/j.amjoto.2021.103299
[62] Gupta S, Lee JJ, Perrin A, et al. Efficacy and safety of saline nasal irrigation plus theophylline for treatment of COVID-19-related olfactory dysfunction: the SCENT2 phase 2 randomized clinical trial[J]. JAMA Otolaryngol Head Neck Surg, 2022, 148(9): 830-837. doi:10.1001/jamaoto.2022.1573
[63] Freiherr J, Hallschmid M, et al. Intranasal insulin as a treatment for alzheimer's disease: a review of basic research and clinical evidence[J]. CNS Drugs, 2013, 27(7): 505-514. doi:10.1007/s40263-013-0076-8
[64] Renner DB, Svitak AL, Gallus NJ, et al. Intranasal delivery of insulin via the olfactory nerve pathway[J]. J Pharm Pharmacol, 2012, 64(12): 1709-1714. doi:10.1111/j.2042-7158.2012.01555.x
[65] Edwin Thanarajah S, Hoffstall V, Rigoux L, et al. The role of insulin sensitivity and intranasally applied insulin on olfactory perception[J]. Sci Rep, 2019, 9(1): 7222. doi:10.1038/s41598-019-43693-7
[66] Brünner YF, Kofoet A, Benedict C, et al. Central insulin administration improves odor-cued reactivation of spatial memory in young men[J]. J Clin Endocrinol Metab, 2015, 100(1): 212-219. doi:10.1210/jc.2014-3018
[67] Mohamad SA, Badawi AM, Mansour HF. Insulin fast-dissolving film for intranasal delivery via olfactory region, a promising approach for the treatment of anosmia in COVID-19 patients: design, in-vitro characterization and clinical evaluation[J]. Int J Pharm, 2021, 601: 120600. doi:10.1016/j.ijpharm.2021.120600
[68] Whitcroft KL, Hummel T. Clinical diagnosis and current management strategies for olfactory dysfunction: a review[J]. JAMA Otolaryngol Head Neck Surg, 2019, 145(9): 846-853. doi:10.1001/jamaoto.2019.1728
[69] Whitcroft KL, Merkonidis C, Cuevas M, et al. Intranasal sodium citrate solution improves olfaction in post-viral hyposmia[J]. Rhinology, 2016, 54(4): 368-374. doi:10.4193/Rhino16.054
[70] Whitcroft KL, Ezzat M, Cuevas M, et al. The effect of intranasal sodium citrate on olfaction in post-infectious loss: results from a prospective, placebo-controlled trial in 49 patients[J]. Clin Otolaryngol, 2017, 42(3): 557-563. doi:10.1111/coa.12789
[71] Philpott CM, Erskine SE, Clark A, et al. A randomised controlled trial of sodium citrate spray for non-conductive olfactory disorders[J]. Clin Otolaryngol, 2017, 42(6): 1295-1302. doi:10.1111/coa.12878
[72] Whitcroft KL, Gunder N, Cuevas M, et al. Intranasal sodium citrate in quantitative and qualitative olfactory dysfunction: results from a prospective, controlled trial of prolonged use in 60 patients[J]. Eur Arch Otorhinolaryngol, 2021, 278(8): 2891-2897. doi:10.1007/s00405-020-06567-7
[73] 吴婵, 魏永祥, PINTO Jayant Marian, 等. 银杏叶提取物联合糖皮质激素对变应性鼻炎小鼠嗅觉功能及炎症因子的影响[J]. 临床耳鼻咽喉头颈外科杂志, 2018, 32(2): 113-117. doi:10.13201/j.issn.1001-1781.2018.02.009 WU Chan, WEI Yongxiang, MARIAN PJ, et al. Effects of Ginkgo biloba extract combined with glucocorticoid on olfactory function and inflammatory cytokines in mice with allergic rhinitis[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2018, 32(2): 113-117. doi:10.13201/j.issn.1001-1781.2018.02.009
[74] 郭怡辰, 姚淋尹, 魏永祥. 糖皮质激素及银杏叶提取物治疗上呼吸道感染后嗅觉障碍临床效果观察[J]. 临床耳鼻咽喉头颈外科杂志, 2017, 31(20): 1585-1588, 1592. doi:10.13201/j.issn.1001-1781.2017.20.010 GUO Yichen, YAO Linyin, WEI Yongxiang. Clinical treatment effect of glucocorticoids and extract of Ginkgo biloba on post-viral olfactory dysfunction[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2017, 31(20): 1585-1588, 1592. doi:10.13201/j.issn.1001-1781.2017.20.010
[75] 魏宏权. 嗅觉功能障碍的分类、评估和治疗[J]. 中国中西医结合耳鼻咽喉科杂志, 2020, 28(3): 161-164, 173. doi:10.16542/j.cnki.issn.1007-4856.2020.03.001 WEI Hongquan. Classification, evaluation and treatment of olfactory dysfunction[J]. Chinese Journal of Otorhinolaryngology in Integrative Medicine, 2020, 28(3): 161-164, 173. doi:10.16542/j.cnki.issn.1007-4856.2020.03.001
[76] Dai Q, Pang ZH, Yu HM. Recovery of olfactory function in postviral olfactory dysfunction patients after acupuncture treatment[J]. Evid Based Complement Alternat Med, 2016, 2016: 4986034. doi:10.1155/2016/4986034
[77] Vent J, Wang DW, Damm M. Effects of traditional Chinese acupuncture in post-viral olfactory dysfunction[J]. Otolaryngol Head Neck Surg, 2010, 142(4): 505-509. doi:10.1016/j.otohns.2010.01.012
[78] Silas J, Doty RL. No evidence for specific benefit of acupuncture over vitamin B complex in treating persons with olfactory dysfunction[J]. Otolaryngol Head Neck Surg, 2010, 143(4): 603;authorreply603-603;authorreply604. doi:10.1016/j.otohns.2010.07.008
[79] Hunter JE, Phillips ME, Walker FDL, et al. Post-viral olfactory dysfunction treated with acupuncture[J]. Acupunct Med, 2021, 39(6): 738-739. doi:10.1177/09645284211026315
[80] 涂明琦, 胡汉通, 胡忍杰, 等. 针灸治疗嗅觉障碍的临床应用及机制探讨[J]. 中国针灸, 2020, 40(4): 425-428. doi:10.13703/j.0255-2930.20190320-k0001 TU Mingqi, HU Hantong, HU Renjie, et al. Clinical application and mechanism exploration on dysosmia treated with acupuncture and moxibustion[J]. Chinese Acupuncture & Moxibustion, 2020, 40(4): 425-428. doi:10.13703/j.0255-2930.20190320-k0001
[81] Badakhsh M, Dastras M, Sarchahi Z, et al. Complementary and alternative medicine therapies and COVID-19: a systematic review[J]. Rev Environ Health, 2021, 36(3): 443-450. doi:10.1515/reveh-2021-0012
[82] Morita A, Murakami A, Uchihara T, et al. Case Report: Acupuncture is an effective treatment for olfactory dysfunction in the post COVID-19 condition[J]. Front Neurol, 2022, 13: 916944. doi:10.3389/fneur.2022.916944
[83] Han ZZ, Zhang Y, Wang PQ, et al. Is acupuncture effective in the treatment of COVID-19 related symptoms? Based on bioinformatics/network topology strategy[J]. Brief Bioinform, 2021, 22(5): bbab110. doi:10.1093/bib/bbab110
[84] 张伟锋, 毕颖斐, 苏立硕, 等. 中西医结合治疗新型冠状病毒肺炎伴味觉、嗅觉障碍验案1例[J]. 中医杂志, 2021, 62(13): 1194-1196. doi:10.13288/j.11-2166/r.2021.13.020 ZHANG Weifeng, BI Yingfei, SU Lishuo, et al. Integrated traditional Chinese and western medicine for coronavirus disease 2019(COVID-19)accompanied with taste and olfactory disorders: a case report[J]. Journal of Traditional Chinese Medicine, 2021, 62(13): 1194-1196. doi:10.13288/j.11-2166/r.2021.13.020
[85] Najafloo R, Majidi J, Asghari A, et al. Mechanism of anosmia caused by symptoms of COVID-19 and emerging treatments[J]. ACS Chem Neurosci, 2021, 12(20): 3795-3805. doi:10.1021/acschemneuro.1c00477
[86] Li ST, Young TH, Lin CF, et al. Promotion of olfactory receptor neuron differentiation of olfactory neuroepithelial cells by using chitosan solution[J]. Am J Rhinol Allergy, 2017, 31(5): 289-292. doi:10.2500/ajra.2017.31.4456
[87] Boecker A, Daeschler SC, Kneser U, et al. Relevance and recent developments of chitosan in peripheral nerve surgery[J]. Front Cell Neurosci, 2019, 13: 104. doi:10.3389/fncel.2019.00104
[88] Alvites RD, Branquinho MV, Sousa AC, et al. Combined use of chitosan and olfactory mucosa mesenchymal stem/stromal cells to promote peripheral nerve regeneration in vivo[J]. Stem Cells Int, 2021, 2021: 6613029. doi:10.1155/2021/6613029
[89] 陈银, 俞晨杰, 钱晓云, 等. 感觉神经性嗅觉功能障碍的治疗研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(4): 365-370. doi:10.13201/j.issn.2096-7993.2021.04.019 CHEN Yin, YU Chenjie, QIAN Xiaoyun, et al. Research progress in the treatment of sensorineural olfactory dysfunction[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2021, 35(4): 365-370. doi:10.13201/j.issn.2096-7993.2021.04.019
[90] Bhutani DL, Ross AG, Lehman AY, et al. Resolution of COVID-19 induced anosmia following treatment with ST266[J]. Otolaryngol Case Rep, 2022, 25: 100475. doi:10.1016/j.xocr.2022.100475
[91] Sajid MI, Moazzam M, Cho Y, et al. siRNA therapeutics for the therapy of COVID-19 and other coronaviruses[J]. Mol Pharm, 2021, 18(6): 2105-2121. doi:10.1021/acs.molpharmaceut.0c01239
[92] Steffens Y, Le Bon SD, Lechien J, et al. Effectiveness and safety of PRP on persistent olfactory dysfunction related to COVID-19[J]. Eur Arch Otorhinolaryngol, 2022, 279(12): 5951-5953. doi:10.1007/s00405-022-07560-y
[93] Denis F, Septans AL, Periers L, et al. Olfactory training and visual stimulation assisted by a web application for patients with persistent olfactory dysfunction after SARS-CoV-2 infection: observational study[J]. J Med Internet Res, 2021, 23(5): e29583. doi:10.2196/29583
[94] Altundag A, Yilmaz E, Kesimli MC. Modified olfactory training is an effective treatment method for COVID-19 induced Parosmia[J]. Laryngoscope, 2022, 132(7): 1433-1438. doi:10.1002/lary.30101
[95] Yaylacı A, Azak E, Önal A, et al. Effects of classical olfactory training in patients with COVID-19-related persistent loss of smell[J]. Eur Arch Otorhinolaryngol, 2023, 280(2): 757-763. doi:10.1007/s00405-022-07570-w
[96] Lechien JR, Vaira LA, Saussez S. Prevalence and 24-month recovery of olfactory dysfunction in COVID-19 patients: a multicentre prospective study[J]. J Intern Med, 2023, 293(1): 82-90. doi:10.1111/joim.13564
[97] Ali Rashid R, Zgair A, Al-Ani RM. Effect of nasal corticosteroid in the treatment of anosmia due to COVID-19: a randomised double-blind placebo-controlled study[J]. Am J Otolaryngol, 2021, 42(5): 103033. doi:10.1016/j.amjoto.2021.103033
[98] Singh CV, Jain S, Parveen S. The outcome of fluticasone nasal spray on anosmia and triamcinolone oral paste in dysgeusia in COVID-19 patients[J]. Am J Otolaryngol, 2021, 42(3): 102892. doi:10.1016/j.amjoto.2020.102892
[99] Abdelalim AA, Mohamady AA, Elsayed RA, et al. Corticosteroid nasal spray for recovery of smell sensation in COVID-19 patients: a randomized controlled trial[J]. Am J Otolaryngol, 2021, 42(2): 102884. doi:10.1016/j.amjoto.2020.102884
[100] Hosseinpoor M, Kabiri M, Rajati Haghi M, et al. Intranasal corticosteroid treatment on recovery of long-term olfactory dysfunction due to COVID-19[J]. Laryngoscope, 2022, 132(11): 2209-2216. doi:10.1002/lary.30353
[101] Vaira LA, Hopkins C, Petrocelli M, et al. Efficacy of corticosteroid therapy in the treatment of long- lasting olfactory disorders in COVID-19 patients[J]. Rhinology, 2021, 59(1): 21-25. doi:10.4193/Rhin20.515
[102] Saussez S, Vaira LA, Chiesa-Estomba CM, et al. Short-term efficacy and safety of oral and nasal corticosteroids in COVID-19 patients with olfactory dysfunction: a European multicenter study[J]. Pathogens, 2021, 10(6): 698. doi:10.3390/pathogens10060698
[103] Kasiri H, Rouhani N, Salehifar E, et al. Mometasone furoate nasal spray in the treatment of patients with COVID-19 olfactory dysfunction: a randomized, double blind clinical trial[J]. Int Immunopharmacol, 2021, 98: 107871. doi:10.1016/j.intimp.2021.107871
[104] Le Bon SD, Konopnicki D, Pisarski N, et al. Efficacy and safety of oral corticosteroids and olfactory training in the management of COVID-19-related loss of smell[J]. Eur Arch Otorhinolaryngol, 2021, 278(8): 3113-3117. doi:10.1007/s00405-020-06520-8
[1] 周一静,邹建银,易红良,吴红敏. TGFBI在头颈部鳞状细胞癌中的表达及其临床意义[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 85-95.
[2] 赵慧,黄超,崔文轩,司明威,杨梦瑶,王红,周芳. 视网膜淋巴瘤治疗中视网膜动脉阻塞1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 123-127.
[3] 涂巧铃,李玉凤,彭军. 鼻咽癌中抗PD-L1/PD-1治疗及非编码RNA调控研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 135-141.
[4] 张淼,杨颖超,付指辉,苏开明. 自主神经功能紊乱与鼻科疾病关系研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 142-148.
[5] 陈倬诣,郑亿庆,杨海弟. 慢性主观性耳鸣分类、发生发展机制及治疗新进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 1-12.
[6] 罗伊雯,肖永涛,高敏倩,杨嘉仪,杨海弟. 慢性主观性耳鸣的声治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 13-23.
[7] 董洪松,王春丽,俞艳萍,陈涛,聂国辉. 声音疗法联合药物治疗慢性主观性耳鸣的临床随机对照研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 30-37.
[8] 许海艳,曹卫,范大川. 多元复合声治疗对突聋患者耳鸣的疗效分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 38-45.
[9] 李璐,赵杰,赵博军. 中心性浆液性脉络膜视网膜病变的发病机制与治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 118-124.
[10] 史彬,葛建荣,刘济生. 新冠疫情期间急诊鼻咽喉镜患者特征分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 15-20.
[11] 韩飞燕,王英. 鼻腔鼻窦神经鞘瘤13例临床分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 21-25.
[12] 艾自琴,李军政. 免疫疫苗在头颈部鳞状细胞癌中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 143-150.
[13] 王欣怡,杨文杰,余文兴,徐艳红,胡纯红,母晓松,蒲晓兵,任建君,赵宇. 家庭化个体多元复合声治疗对耳鸣伴听力损失患者的疗效及影响因素分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 70-76.
[14] 张钰曲毅. 眼弓形体病的发病机制及防治研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 70-76.
[15] 王娇娇,李苗宋宗明. 糖尿病视网膜病变的机制和细胞模型研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 93-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!