山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (3): 130-136.doi: 10.6040/j.issn.1673-3770.0.2022.538

• 综述 • 上一篇    

糖尿病性黄斑缺血的研究进展

常威威,焦万珍,崔艳艳,赵杰,刘兆强,赵博军   

  1. 山东第一医科大学附属省立医院 眼科, 山东 济南 250021
  • 发布日期:2024-06-04

Research progress of diabetic macular ischaemia

CHANG Weiwei, JIAO Wanzhen, CUI Yanyan, ZHAO Jie, LIU Zhaoqiang, ZHAO Bojun   

  1. Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
  • Published:2024-06-04

摘要: 糖尿病可以引起各种眼部并发症,其中糖尿病视网膜病变(diabetic retinopathy, DR)是最常见的致盲性并发症,糖尿病性黄斑缺血(diabetic macular ischaemia, DMI)是DR中引起视力下降的原因之一。目前关于DMI的发病原因、机制及治疗尚未明确,研究仍然处于起步阶段,但DMI对患者带来的影响不容忽视,充分了解这一疾病对临床医生十分重要。论文综述糖尿病性黄斑缺血的危险因素、发病机制、诊断和治疗的研究进展。

关键词: 糖尿病性黄斑缺血, 糖尿病视网膜病变, 糖尿病黄斑水肿, 荧光素眼底血管造影, 眼底相干光层析血管成像术

Abstract: Diabetes can cause various eye complications, of which diabetic retinopathy(DR)is the most common cause of blindness, and diabetic macular ischemia(DMI)is one of the causes of vision loss in DR. The pathogenesis, mechanism, and treatment of DMI have not been fully elucidated yet, and research is still in its early stages. However, the impact of DMI on patients cannot be ignored, and clinicians need to understand the disease completely. Therefore, this article reviews the research progress including risk factors, pathogenesis, diagnosis and treatment of diabetes induced by macular ischemia.

Key words: Diabetic macular ischemia, Diabetic retinopathy, Diabetic macular edema, Fundus fluorescein angiography, Optical coherence tomography angiography

中图分类号: 

  • R774.5
[1] Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591. doi:10.1016/j.ophtha.2021.04.027
[2] Sim DA, Keane PA, Zarranz-Ventura J, et al. The effects of macular ischemia on visual acuity in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2013, 54(3): 2353-2360. doi:10.1167/iovs.12-11103
[3] Grosso A, Cheung N, Veglio F, et al. Similarities and differences in early retinal phenotypes in hypertension and diabetes[J]. J Hypertens, 2011, 29(9): 1667-1675. doi:10.1097/HJH.0b013e3283496655
[4] Frank RN. Diabetic retinopathy and systemic factors[J]. Middle East Afr J Ophthalmol, 2015, 22(2): 151-156. doi:10.4103/0974-9233.154388
[5] Action to Control Cardiovascular Risk in Diabetes Follow-On(ACCORDION)Eye Study Group and the Action to Control Cardiovascular Risk in Diabetes Follow-On(ACCORDION)Study Group. Persistent effects of intensive glycemic control on retinopathy in type 2 diabetes in the action to control cardiovascular risk in diabetes(ACCORD)follow-on study[J]. Diabetes Care, 2016, 39(7): 1089-1100. doi:10.2337/dc16-0024
[6] Yin L, Zhang DL, Ren Q, et al. Prevalence and risk factors of diabetic retinopathy in diabetic patients: a community based cross-sectional study[J]. Medicine, 2020, 99(9): e19236. doi:10.1097/MD.0000000000019236
[7] Simó-Servat O, Hernández C, Simó R. Diabetic retinopathy in the context of patients with diabetes[J]. Ophthalmic Res, 2019, 62(4): 211-217. doi:10.1159/000499541
[8] Tombolini B, Borrelli E, Sacconi R, et al. Diabetic macular ischemia[J]. Acta Diabetol, 2022, 59(6): 751-759. doi:10.1007/s00592-021-01844-1
[9] Meyer-Rüsenberg B, Pavlidis M, Stupp T, et al. Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2007, 245(7): 1009-1018. doi:10.1007/s00417-006-0489-x
[10] Ashton N. Arteriolar involvement in diabetic retinopathy[J]. Br J Ophthalmol, 1953, 37(5): 282-292. doi:10.1136/bjo.37.5.282
[11] Busik JV. Lipid metabolism dysregulation in diabetic retinopathy[J]. J Lipid Res, 2021, 62: 100017. doi:10.1194/jlr.TR120000981
[12] Chew EY, Klein ML, Ferris FL 3rd, et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study(ETDRS)Report 22[J]. Arch Ophthalmol, 1996, 114(9): 1079-1084. doi:10.1001/archopht.1996.01100140281004
[13] Eckel RH, McLean E, Albers JJ, et al. Plasma lipids and microangiopathy in insulin-dependent diabetes mellitus[J]. Diabetes Care, 1981, 4(4): 447-453. doi:10.2337/diacare.4.4.447
[14] Dornan TL, Carter RD, Bron AJ, et al. Low density lipoprotein cholesterol: an association with the severity of diabetic retinopathy[J]. Diabetologia, 1982, 22(3): 167-170. doi:10.1007/BF00283746
[15] Lee DH, Yi HC, Bae SH, et al. Risk factors for retinal microvascular impairment in type 2 diabetic patients without diabetic retinopathy[J]. PLoS One, 2018, 13(8): e0202103. doi:10.1371/journal.pone.0202103
[16] Lyons TJ, Jenkins AJ, Zheng DY, et al. Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort[J]. Invest Ophthalmol Vis Sci, 2004, 45(3): 910-918. doi:10.1167/iovs.02-0648
[17] Fu D, Wu M, Zhang J, et al. Mechanisms of modified LDL-induced pericyte loss and retinal injury in diabetic retinopathy[J]. Diabetologia, 2012, 55(11): 3128-3140. doi:10.1007/s00125-012-2692-0
[18] Usman M. An overview of our current understanding of diabetic macular ischemia(DMI)[J]. Cureus, 2018, 10(7): e3064. doi:10.7759/cureus.3064
[19] Cheung CMG, Fawzi A, Teo KY, et al. Diabetic macular ischaemia- a new therapeutic target?[J]. Prog Retin Eye Res, 2022, 89: 101033. doi:10.1016/j.preteyeres.2021.101033
[20] Beltramo E, Porta M. Pericyte loss in diabetic retinopathy: mechanisms and consequences[J]. Curr Med Chem, 2013, 20(26): 3218-3225. doi:10.2174/09298673113209990022
[21] Nyengaard JR, Ido Y, Kilo C, et al. Interactions between hyperglycemia and hypoxia: implications for diabetic retinopathy[J]. Diabetes, 2004, 53(11): 2931-2938. doi:10.2337/diabetes.53.11.2931
[22] Yang Y, Liu Y, Li YP, et al. microRNA-15b targets VEGF and inhibits angiogenesis in proliferative diabetic retinopathy[J]. J Clin Endocrinol Metab, 2020, 105(11): 3404-3415. doi:10.1210/clinem/dgaa538
[23] Chauhan MZ, Rather PA, Samarah SM, et al. Current and novel therapeutic approaches for treatment of diabetic macular edema[J]. Cells, 2022, 11(12): 1950. doi:10.3390/cells11121950
[24] Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders[J]. N Engl J Med, 1994, 331(22): 1480-1487. doi:10.1056/NEJM199412013312203
[25] Romero-Aroca P, Baget-Bernaldiz M, Pareja-Rios A, et al. Diabetic macular edema pathophysiology: vasogenic versus inflammatory[J]. J Diabetes Res, 2016: 2156273. doi:10.1155/2016/2156273
[26] Zhang JF, Zhang JX, Zhang CY, et al. Diabetic macular edema: current understanding, molecular mechanisms and therapeutic implications[J]. Cells, 2022, 11(21): 3362. doi:10.3390/cells11213362
[27] Bahrami B, Zhu MD, Hong T, et al. Diabetic macular oedema: pathophysiology, management challenges and treatment resistance[J]. Diabetologia, 2016, 59(8): 1594-1608. doi:10.1007/s00125-016-3974-8
[28] Lally DR, Shah CP, Heier JS. Vascular endothelial growth factor and diabetic macular edema[J]. Surv Ophthalmol, 2016, 61(6): 759-768. doi:10.1016/j.survophthal.2016.03.010
[29] Bhanushali D, Anegondi N, Gadde SGK, et al. Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT519-OCT525. doi:10.1167/iovs.15-18901
[30] Arend O, Wolf S, Jung F, et al. Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network[J]. Br J Ophthalmol, 1991, 75(9): 514-518. doi:10.1136/bjo.75.9.514
[31] Conrath J, Giorgi R, Raccah D, et al. Foveal avascular zone in diabetic retinopathy: quantitative vs qualitative assessment[J]. Eye, 2005, 19(3): 322-326. doi:10.1038/sj.eye.6701456
[32] Sim DA, Keane PA, Zarranz-Ventura J, et al. Predictive factors for the progression of diabetic macular ischemia[J]. Am J Ophthalmol, 2013, 156(4): 684-692. doi:10.1016/j.ajo.2013.05.033
[33] Huber G, Heynen S, Imsand C, et al. Novel rodent models for macular research[J]. PLoS One, 2010, 5(10): e13403. doi:10.1371/journal.pone.0013403
[34] Roy S, Kim D. Retinal capillary basement membrane thickening: role in the pathogenesis of diabetic retinopathy[J]. Prog Retin Eye Res, 2021, 82: 100903. doi:10.1016/j.preteyeres.2020.100903
[35] Roy S, Ha J, Trudeau K, et al. Vascular basement membrane thickening in diabetic retinopathy[J]. Curr Eye Res, 2010, 35(12): 1045-1056. doi:10.3109/02713683.2010.514659
[36] Chung EJ, Roh MI, Kwon OW, et al. Effects of macular ischemia on the outcome of intravitreal bevacizumab therapy for diabetic macular edema[J]. Retina, 2008, 28(7): 957-963. doi:10.1097/IAE.0b013e3181754209
[37] Hammes HP. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond[J]. Diabetologia, 2018, 61(1): 29-38. doi:10.1007/s00125-017-4435-8
[38] Rossino MG, Dal Monte M, Casini G. Relationships between neurodegeneration and vascular damage in diabetic retinopathy[J]. Front Neurosci, 2019, 13: 1172. doi:10.3389/fnins.2019.01172
[39] De Juan JA, Moya FJ, Ripodas A, et al. Changes in the density and localisation of endothelin receptors in the early stages of rat diabetic retinopathy and the effect of insulin treatment[J]. Diabetologia, 2000, 43(6): 773-785. doi:10.1007/s001250051375
[40] Simó R, Hernández C. Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence[J]. Prog Retin Eye Res, 2015, 48: 160-180. doi:10.1016/j.preteyeres.2015.04.003
[41] Simó R, Hernández C, European Consortium for the Early Treatment of Diabetic Retinopathy(EUROCONDOR). Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives[J]. Trends Endocrinol Metab, 2014, 25(1): 23-33. doi:10.1016/j.tem.2013.09.005
[42] Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: does it really matter?[J]. Diabetologia, 2018, 61(9): 1902-1912. doi:10.1007/s00125-018-4692-1
[43] Du YP, Smith MA, Miller CM, et al. Diabetes-induced nitrative stress in the retina, and correction by aminoguanidine[J]. J Neurochem, 2002, 80(5): 771-779. doi:10.1046/j.0022-3042.2001.00737.x
[44] Dong N, Chang LB, Wang BS, et al. Retinal neuronal MCP-1 induced by AGEs stimulates TNF-α expression in rat microglia via p38, ERK, and NF-κB pathways[J]. Mol Vis, 2014, 20: 616-628
[45] Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration[J]. Int J Mol Sci, 2018, 19(1): 110. doi:10.3390/ijms19010110
[46] Fukumoto M, Nakaizumi A, Zhang T, et al. Vulnerability of the retinal microvasculature to oxidative stress: ion channel-dependent mechanisms[J]. Am J Physiol Cell Physiol, 2012, 302(9): C1413-C1420. doi:10.1152/ajpcell.00426.2011
[47] Du YP, Veenstra A, Palczewski K, et al. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina[J]. Proc Natl Acad Sci USA, 2013, 110(41): 16586-16591. doi:10.1073/pnas.1314575110
[48] Zhu ZY, Liang YL, Yan B, et al. Clinical effect of conbercept on improving diabetic macular ischemia by OCT angiography[J]. BMC Ophthalmol, 2020, 20(1): 382. doi:10.1186/s12886-020-01648-x
[49] Classification of diabetic retinopathy from fluorescein angiograms. ETDRS report number 11. Early Treatment Diabetic Retinopathy Study Research Group[J]. Ophthalmology, 1991, 98(5 Suppl): 807-822
[50] Bradley PD, Sim DA, Keane PA, et al. The evaluation of diabetic macular ischemia using optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(2): 626-631. doi:10.1167/iovs.15-18034
[51] 梁倩倩, 杨庭骅, 赵博军. 光学相干层析血管扫描在视网膜静脉阻塞中的应用[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 139-142. doi:10.6040/j.issn.1673-3770.0.2018.364 LIANG Qianqian, YANG Tinghua, ZHAO Bojun. Application of optical coherence tomography angiography in retinal vein occlusion[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 139-142. doi:10.6040/j.issn.1673-3770.0.2018.364
[52] Takase N, Nozaki M, Kato A, et al. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2377-2383. doi:10.1097/IAE.0000000000000849
[53] Hayreh SS. The central artery of the retina. its role in the blood supply of the optic nerve[J]. Br J Ophthalmol, 1963, 47(11): 651-663. doi:10.1136/bjo.47.11.651
[54] Tsai ASH, Gan ATL, Ting DSW, et al. DIABETIC MACULAR ISCHEMIA: correlation of retinal vasculature changes by optical coherence tomography angiography and functional deficit[J]. Retina, 2020, 40(11): 2184-2190. doi:10.1097/IAE.0000000000002721
[55] 中国医师协会心血管内科医师分会, 《2型糖尿病患者泛血管疾病风险评估与管理中国专家共识版》专家组. 2型糖尿病患者泛血管疾病风险评估与管理中国专家共识(2022版)[J]. 中国循环杂志, 2022, 37(10): 974-990. doi:10.3969/j.issn.1000-3614.2022.10.002
[56] Evans T, Deng DX, Chen S, et al. Endothelin receptor blockade prevents augmented extracellular matrix component mRNA expression and capillary basement membrane thickening in the retina of diabetic and galactose-fed rats[J]. Diabetes, 2000, 49(4): 662-666. doi:10.2337/diabetes.49.4.662
[57] Chong V, Nguyen QD, Sepah Y, et al. HORNBILL: a phase Ⅰ/Ⅱa trial examining the safety, tolerability and early response of BI 764524 in patients with diabetic retinopathy and diabetic macular ischaemia-rationale, study design and protocol[J]. Trials, 2022, 23(1): 669. doi:10.1186/s13063-022-06527-y
[58] Karst SG, Deak GG, Gerendas BS, et al. Association of changes in macular perfusion with ranibizumab treatment for diabetic macular edema: a subanalysis of the RESTORE(extension)study[J]. JAMA Ophthalmol, 2018, 136(4): 315-321. doi:10.1001/jamaophthalmol.2017.6135
[59] Tang L, Xu GT, Zhang JF. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy[J]. Neural Regen Res, 2023, 18(5): 976-982. doi:10.4103/1673-5374.355743
[60] Park SS. Cell therapy applications for retinal vascular diseases: diabetic retinopathy and retinal vein occlusion[J]. Invest Ophthalmol Vis Sci, 2016, 57(5): ORSFj1-ORSFj10. doi:10.1167/iovs.15-17594
[61] Yang DW, Sun ZH, Shi J, et al. A multitask deep-learning system for assessment of diabetic macular ischemia on optical coherence tomography angiography images[J]. Retina, 2022, 42(1): 184-194. doi:10.1097/IAE.0000000000003287
[1] 何静,雷春燕,张美霞. 糖化血红蛋白变异指数与糖尿病视网膜病变严重程度的相关性研究[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 34-40.
[2] 伦英俊,陈晨,高宏程,范清琳,邰仁清. TLR4/NF-κB通道在糖尿病视网膜病变中的作用[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 163-168.
[3] 唐慧新,李景景,邹红. 阈值下微脉冲激光光凝作用机制及临床应用[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 143-148.
[4] 刘通,林玮,冯萌,杨依,刘婷婷,张敏. 基于网络药理学分析小檗碱在免疫微环境中对糖尿病视网膜病变的作用及实验验证[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 94-104.
[5] 王娇娇,李苗宋宗明. 糖尿病视网膜病变的机制和细胞模型研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 93-99.
[6] 王惠, 王俊,孙乙,于腾飞,朱玉广, 朱艳. 玻璃体腔注射HGF-MSCs对糖尿病大鼠视网膜HGF表达的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 72-77.
[7] 刘志高,王淑雅,韩旭光,王玉,李志伟,马爱华,赵博军. 增殖性糖尿病视网膜病变术前玻璃体腔应用阿柏西普的时机及其疗效观察[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 99-103.
[8] 刘建波,张环. 超声乳化联合玻璃体腔药物注射治疗白内障合并糖尿病性黄斑水肿[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 99-104.
[9] 李宝华,刘平,王新. β-榄香烯影响糖尿病大鼠视网膜中IL-1β、ICAM-1表达分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 111-114.
[10] 梁倩倩,杨庭骅,赵博军. 光学相干层析血管扫描在视网膜静脉阻塞中的应用[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 139-142.
[11] 刘万智,陈珺,樊长春. 康柏西普治疗增生性糖尿病视网膜病变[J]. 山东大学耳鼻喉眼学报, 2018, 32(6): 88-91.
[12] 周学义,李一鸣,王美菊,张苑苑,张历浊. 25+微创玻璃体视网膜手术联合玻璃体腔注射雷珠单抗治疗增生型糖尿病视网膜病变的临床观察[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 87-89.
[13] 周玮琰,王洪亚,杜秀娟,董卫红. 甘糖酯对糖尿病大鼠视网膜病变中血管生成因子VEGF表达的影响[J]. 山东大学耳鼻喉眼学报, 2017, 31(2): 90-95.
[14] 邵娜,张晗. 糖尿病患者行白内障超声乳化术后视力及眼底的变化[J]. 山东大学耳鼻喉眼学报, 2016, 30(1): 83-87.
[15] 李俊英. 瑞舒伐他汀联合非诺贝特对老年糖尿病视网膜病变患者血管内皮功能的影响[J]. 山东大学耳鼻喉眼学报, 2015, 29(5): 72-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!