山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (6): 68-74.doi: 10.6040/j.issn.1673-3770.0.2023.169
王璐,张云云,郭华,崔小川
WANG Lu, ZHANG Yunyun, GUO Hua, CUI Xiaochuan
摘要: 阻塞性睡眠呼吸暂停低通气综合征(obstructive sleep apnoea, OSA)是一种常见的临床疾病,其特征是慢性间歇性缺氧和睡眠片段化,可导致多器官、多系统功能障碍。OSA可增加阿尔兹海默症(Alzheimer's disease, AD)的风险,同时可导致脂质代谢的异常,而脂质代谢异常也是AD重要的发病机制。从胆固醇代谢、磷脂类代谢、脂蛋白类代谢、载脂蛋白类代谢对OSA的脂质代谢异常的标志物及其可能参与AD的起病及进展进行综述,有助于筛选OSA增加AD风险的早期评估指标,为临床探索生物标志物构建理论依据。
中图分类号:
[1] Morsy NE, Farrag NS, Zaki NFW, et al. Obstructive sleep apnea: personal, societal, public health, and legal implications[J]. Rev Environ Health, 2019, 34(2): 153-169. doi:10.1515/reveh-2018-0068 [2] Bubu OM, Andrade AG, Umasabor-Bubu OQ, et al. Obstructive sleep apnea, cognition and Alzheimer's disease: a systematic review integrating three decades of multidisciplinary research[J]. Sleep Med Rev, 2020, 50: 101250. doi:10.1016/j.smrv.2019.101250 [3] 朱英超, 吴晴伟, 许晨婕, 等. 阻塞性睡眠呼吸暂停低通气综合征患者认知功能障碍现状调查及与生活质量的相关性研究[J]. 现代生物医学进展, 2022, 22(16): 3036-3040. doi:10.13241/j.cnki.pmb.2022.16.008 ZHU Yingchao, WU Qingwei, XU Chenjie, et al. Status survey of cognitive impairment in patients with obstructive sleep apnea hypopnea syndrome and its correlation with quality of life[J]. Progress in Modern Biomedicine, 2022, 22(16): 3036-3040. doi:10.13241/j.cnki.pmb.2022.16.008 [4] Zabel M, Nackenoff A, Kirsch WM, et al. Markers of oxidative damage to lipids, nucleic acids and proteins and antioxidant enzymes activities in Alzheimer's disease brain: a meta-analysis in human pathological specimens[J]. Free Radic Biol Med, 2018, 115: 351-360. doi:10.1016/j.freeradbiomed.2017.12.016 [5] Schrag M, Mueller C, Zabel M, et al. Oxidative stress in blood in Alzheimer's disease and mild cognitive impairment: a meta-analysis[J]. Neurobiol Dis, 2013, 59: 100-110. doi:10.1016/j.nbd.2013.07.005 [6] Turner AD, Locklear CE, Oruru D, et al. Exploring the combined effects of sleep apnea and APOE-e4 on biomarkers of Alzheimer's disease[J]. Front Aging Neurosci, 2023, 14: 1017521. doi:10.3389/fnagi.2022.1017521 [7] Barros D, García-Río F. Obstructive sleep apnea and dyslipidemia: from animal models to clinical evidence[J]. Sleep, 2019, 42(3): zsy236. doi:10.1093/sleep/zsy236 [8] Casas-Fernández E, Peña-Bautista C, Baquero M, et al. Lipids as early and minimally invasive biomarkers for Alzheimer's disease[J]. Curr Neuropharmacol, 2022, 20(8): 1613-1631. doi:10.2174/1570159X19666211102150955 [9] Kao YC, Ho PC, Tu YK, et al. Lipids and Alzheimer's disease[J]. Int J Mol Sci, 2020, 21(4): 1505. doi:10.3390/ijms21041505 [10] Agarwal M, Khan S. Plasma lipids as biomarkers for Alzheimer's disease: a systematic review[J]. Cureus, 2020, 12(12): e12008. doi:10.7759/cureus.12008 [11] Li J, Nanayakkara A, Jun J, et al. Effect of deficiency in SREBP cleavage-activating protein on lipid metabolism during intermittent hypoxia[J]. Physiol Genomics,2007,31(2):273-280.doi: 10.1152/physiolgenomics.00082.2007 [12] Agarwal M, Khan S. Plasma lipids as biomarkers for Alzheimer's disease: a systematic review[J]. Cureus, 2020, 12(12): e12008. doi:10.7759/cureus.12008 [13] Kelicen P, Nordberg A. Feedback regulation of SREBP and aromatase in A beta(25-35)-supplemented human neuroblastoma cells[J]. Cell Mol Neurobiol, 2006, 26(3): 225-235. doi:10.1007/s10571-006-9060-x [14] Astarita G, Jung KM, Vasilevko V, et al. Elevated stearoyl-CoA desaturase in brains of patients with Alzheimer's disease[J]. PLoS One, 2011, 6(10): e24777. doi:10.1371/journal.pone.0024777 [15] Xu RY, Huang R, Xiao Y, et al. Attenuated macrophage cholesterol efflux function in patients with obstructive sleep apnea-hypopnea syndrome[J]. Sleep Breath, 2015, 19(1): 369-375. doi:10.1007/s11325-014-1030-9 [16] Bossaerts L, Cacace R, Van Broeckhoven C. The role of ATP-binding cassette subfamily A in the etiology of Alzheimer's disease[J]. Mol Neurodegener, 2022, 17(1): 31. doi:10.1186/s13024-022-00536-w [17] Jacobo-Albavera L, Domínguez-Pérez M, Medina-Leyte DJ, et al. The role of the ATP-binding cassette A1(ABCA1)in human disease[J]. Int J Mol Sci, 2021, 22(4): 1593. doi:10.3390/ijms22041593 [18] Jiang Q, Lee CY, Mandrekar S, et al. ApoE promotes the proteolytic degradation of Abeta. Neuron[J]. 2008,58(5):681-693.doi:10.1016/j.neuron.2008.04.010 [19] Zappelli E, Daniele S, Ceccarelli L, et al. α-Glyceryl-phosphoryl-ethanolamine protects human hippocampal neurons from ageing-induced cellular alterations[J]. Eur J Neurosci, 2022, 56(5): 4514-4528. doi:10.1111/ejn.15783 [20] Dakterzada F, Benítez ID, Targa A, et al. Blood-based lipidomic signature of severe obstructive sleep apnoea in Alzheimer's disease[J]. Alzheimers Res Ther, 2022, 14(1): 163. doi:10.1186/s13195-022-01102-8 [21] Alberghina M, Giuffrida AM. Effect of hypoxia on the incorporation of[2-3H] glycerol and[1-14C [-palmitate into lipids of various brain regions[J]. J Neurosci Res, 1981, 6(3): 403-419. doi:10.1002/jnr.490060315 [22] Kawai M, Kirkness JP, Yamamura S, et al. Increased phosphatidylcholine concentration in saliva reduces surface tension and improves airway patency in obstructive sleep apnoea[J]. J Oral Rehabil, 2013, 40(10): 758-766. doi:10.1111/joor.12094 [23] Liu TT, Pang SJ, Jia SS, et al. Association of plasma phospholipids with age-related cognitive impairment: results from a cross-sectional study[J]. Nutrients, 2021, 13(7): 2185. doi:10.3390/nu13072185 [24] Song S, Cheong LZ, Man QQ, et al. Characterization of potential plasma biomarkers related to cognitive impairment by untargeted profiling of phospholipids using the HILIC-ESI-IT-TOF-MS system[J]. Anal Bioanal Chem, 2018, 410(12): 2937-2948. doi:10.1007/s00216-018-0975-0 [25] Gündüz C, Basoglu OK, Hedner J, et al. Obstructive sleep apnoea independently predicts lipid levels: data from the European Sleep Apnea Database[J]. Respirol Carlton Vic, 2018, 23(12): 1180-1189. doi:10.1111/resp.13372 [26] Nadeem R, Singh M, Nida M, et al. Effect of obstructive sleep apnea hypopnea syndrome on lipid profile: a meta-regression analysis[J]. J Clin Sleep Med, 2014, 10(5): 475-489. doi:10.5664/jcsm.3690 [27] Iqbal G, Braidy N, Ahmed T. Blood-based biomarkers for predictive diagnosis of cognitive impairment in a Pakistani population[J]. Front Aging Neurosci, 2020, 12: 223. doi:10.3389/fnagi.2020.00223 [28] Sáiz-Vazquez O, Puente-Martínez A, Ubillos-Landa S, et al. Cholesterol and Alzheimer's disease risk: a meta-meta-analysis[J]. Brain Sci, 2020, 10(6): 386. doi:10.3390/brainsci10060386 [29] Marsillach J, Adorni MP, Zimetti F, et al. HDL proteome and Alzheimer's disease: evidence of a link[J]. Antioxidants, 2020, 9(12): 1224. doi:10.3390/antiox9121224 [30] Button EB, Robert J, Caffrey TM, et al. HDL from an Alzheimer's disease perspective[J]. Curr Opin Lipidol, 2019, 30(3): 224-234. doi:10.1097/MOL.0000000000000604 [31] Bruce KD, Tang MP, Reigan P, et al. Genetic variants of lipoprotein lipase and regulatory factors associated with Alzheimer’s disease risk[J]. Int J Mol Sci, 2020, 21(21): 8338. doi:10.3390/ijms21218338 [32] 吕圆, 王姝之, 戴斌, 等. 脂蛋白脂肪酶在神经系统研究进展[J]. 中国临床药理学与治疗学, 2022, 27(9): 1041-1048. doi:10.12092/j.issn.1009-2501.2022.09.011 LÜ Yuan, WANG Shuzhi, DAI Bin, et al. New advances in nervous system of lipoprotein lipase[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(9): 1041-1048. doi:10.12092/j.issn.1009-2501.2022.09.011 [33] 李洁, 张艳林, 王婧, 等. 阻塞性睡眠呼吸暂停综合征患者血清中脂蛋白脂肪酶水平与脂代谢紊乱的相关性[J]. 中华医学杂志, 2014, 94(6): 403-407. doi:10.3760/cma.j.issn.0376-2491.2014.06.002 LI Jie, ZHANG Yanlin, WANG Jing, et al. Association between serum lipoprotein lipase level and dyslipidemia in patients with obstructive sleep apnea syndrome[J]. National Medical Journal of China, 2014, 94(6): 403-407. doi:10.3760/cma.j.issn.0376-2491.2014.06.002 [34] Bruce KD, Tang MP, Reigan P, et al. Genetic variants of lipoprotein lipase and regulatory factors associated with Alzheimer's disease risk[J]. Int J Mol Sci, 2020, 21(21): 8338. doi:10.3390/ijms21218338 [35] Loving BA, Bruce KD. Lipid and lipoprotein metabolism in microglia[J]. Front Physiol, 2020, 11: 393. doi:10.3389/fphys.2020.00393 [36] Jeong W, Lee H, Cho S, et al. ApoE4-induced cholesterol dysregulation and its brain cell type-specific implications in the pathogenesis of Alzheimer's disease[J]. Mol Cells, 2019, 42(11): 739-746. doi:10.14348/molcells.2019.0200 [37] Therriault J, Benedet AL, Pascoal TA, et al. Alzheimer's disease neuroimaging initiative APOEε4 potentiates the relationship between amyloid-β and tau pathologies[J]. Mol Psychiatry, 2021,26(10):5977-5988. doi:10.1038/s41380-020-0688-6 [38] O'Hara R, Schröder CM, Kraemer HC, et al. Nocturnal sleep apnea/hypopnea is associated with lower memory performance in APOE epsilon4 carriers[J]. Neurology, 2005, 65(4): 642-644. doi:10.1212/01.wnl.0000173055.75950.bf [39] Cosentino FI, Bosco P, Drago V, et al. The APOE epsilon4 allele increases the risk of impaired spatial working memory in obstructive sleep apnea[J]. Sleep Med, 2008, 9(8): 831-839. doi:10.1016/j.sleep.2007.10.015 [40] Huang YD, Mahley RW. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases[J]. Neurobiol Dis, 2014, 72(Pt A): 3-12. doi:10.1016/j.nbd.2014.08.025 [41] Lim AS, Yu L, Kowgier M, et al. Modification of the relationship of the apolipoprotein E ε4 allele to the risk of Alzheimer disease and neurofibrillary tangle density by sleep[J]. JAMA Neurol, 2013, 70(12): 1544-1551. doi:10.1001/jamaneurol.2013.4215 [42] Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer's disease: advances in genetics, pathophysiology, and therapeutic approaches[J]. Lancet Neurol, 2021, 20(1): 68-80. doi:10.1016/S1474-4422(20)30412-9 [43] Wei WR, Wang KR, Shi JY, et al. The relationship between sleep disturbance and apolipoprotein E ε4 in adults with mild cognitive impairment and Alzheimer's disease dementia: an integrative review[J]. Biol Res Nurs, 2022, 24(3): 327-337. doi:10.1177/10998004221081044 [44] Yi MH, Tan Y, Pi YZ, et al. Variants of candidate genes associated with the risk of obstructive sleep apnea[J]. Eur J Clin Invest, 2022, 52(1): e13673. doi:10.1111/eci.13673 [45] Xu HJ, Qian YJ, Guan J, et al. No association between the ApoE ε2 and ε4 alleles and the risk of obstructive sleep apnea: a systematic review and meta-analysis[J]. Biomed Rep, 2015, 3(3): 313-318. doi:10.3892/br.2015.425 [46] Qian J, Betensky RA, Hyman BT, et al. Association of APOE genotype with heterogeneity of cognitive decline rate in alzheimer disease[J]. Neurology, 2021, 96(19): e2414-e2428. doi:10.1212/WNL.0000000000011883 [47] Paula-Lima AC, Tricerri MA, Brito-Moreira J, et al. Human apolipoprotein A-I binds amyloid-beta and prevents Abeta-induced neurotoxicity[J]. Int J Biochem Cell Biol, 2009, 41(6): 1361-1370. doi:10.1016/j.biocel.2008.12.003 [48] Lewis TL, Cao DF, Lu HL, et al. Overexpression of human apolipoprotein A-I preserves cognitive function and attenuates neuroinflammation and cerebral amyloid angiopathy in a mouse model of alzheimer disease[J]. J Biol Chem, 2010, 285(47): 36958-36968. doi:10.1074/jbc.M110.127829 [49] Leduc V, Jasmin-Bélanger S, Poirier J. APOE and cholesterol homeostasis in Alzheimer's disease[J]. Trends Mol Med, 2010, 16(10): 469-477. doi:10.1016/j.molmed.2010.07.008 [50] Li X, Ma YF, Wei X, et al. Clusterin in Alzheimer's disease: a player in the biological behavior of amyloid-beta[J]. Neurosci Bull, 2014, 30(1): 162-168. doi:10.1007/s12264-013-1391-2 [51] Peng Y, Zhou L, Cao Y, et al. Relation between serum leptin levels, lipid profiles and neurocognitive deficits in Chinese OSAHS patients[J]. Int J Neurosci, 2017,127(11):981-987. doi: 10.1080/00207454.2017.1286654 [52] Namba Y, Tsuchiya H, Ikeda K. Apolipoprotein B immunoreactivity in senile plaque and vascular amyloids and neurofibrillary tangles in the brains of patients with Alzheimer's disease[J]. Neurosci Lett, 1992, 134(2): 264-266. doi:10.1016/0304-3940(92)90531-b [53] Kuo YM, Emmerling MR, Bisgaier CL, et al. Elevated low-density lipoprotein in Alzheimer's disease correlates with brain aβ 1-42 levels[J]. Biochem Biophys Res Commun, 1998, 252(3): 711-715. doi:10.1006/bbrc.1998.9652 [54] Hu H, Tan L, Bi YL, et al. Association of serum Apolipoprotein B with cerebrospinal fluid biomarkers of Alzheimer's pathology[J]. Ann Clin Transl Neurol, 2020, 7(10): 1766-1778. doi:10.1002/acn3.51153 [55] Fadaei R, Mohassel Azadi S, Rhéaume E, et al. High-density lipoprotein cholesterol efflux capacity in patients with obstructive sleep apnea and its relation with disease severity[J]. Lipids Health Dis, 2022, 21(1): 116. doi:10.1186/s12944-022-01723-w [56] Zhang WD, Hu CY, Yang Z, et al. APOE and APOC1 gene polymorphisms are associated with cognitive impairment progression in Chinese patients with late-onset Alzheimer's disease[J]. Neural Regen Res, 2014, 9(6): 653. doi:10.4103/1673-5374.130117 |
[1] | 任晓勇. 阻塞性睡眠呼吸暂停合并症的研究现状和未来展望[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 1-5. |
[2] | 胡婷婷,王越华. 阻塞性睡眠呼吸暂停与乳腺癌相关性研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 41-45. |
[3] | 朱雅欣,刘峰,关建,殷善开. 儿童扁桃体腺样体肥大组织淋巴细胞改变的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 62-67. |
[4] | 王磊,李保卫,王刚,刘红丹,韩浩伦,张晓丽,吴玮. 阻塞性睡眠呼吸暂停低通气综合征患者夜间碱反流初步研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 75-79. |
[5] | 王腾,余林,李穗. 血清γ-谷氨酰基转移酶与阻塞性睡眠呼吸暂停综合征伴发高血压的相关性研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 80-84. |
[6] | 袁钰淇,曹子讷,牛晓欣,谢雨杉,苏永龙,朱思敏,张一彤,刘海琴,任晓勇,施叶雯. 外周血炎症指标在阻塞性睡眠呼吸暂停低通气综合征伴高血压中的临床意义[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 85-92. |
[7] | 王钰彧,朱梅. 体位性睡眠呼吸暂停患者的临床特点及其与低觉醒阈值的相关性研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 101-105. |
[8] | 邢亮,袁钰淇,谢雨杉,苏永龙,牛晓欣,麻莉娜,王子桐,刘海琴,施叶雯,任晓勇. 不同觉醒阈值阻塞性睡眠呼吸暂停低通气患者对血气、糖脂代谢水平的影响[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 106-111. |
[9] | 张玉焕,张俊波,尹国平,袁雪梅,曹鑫,孙宇,陈强,叶京英. 鼾症患者前后半夜多导睡眠监测参数的对比分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 112-117. |
[10] | 张一彤,李青香,石争浩,尚磊,袁钰淇,曹子讷,麻莉娜,刘海琴,任晓勇,施叶雯. 阻塞性睡眠呼吸暂停儿童睡眠结构研究及睡眠结构判读模型建立[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 126-132. |
[11] | 丁龙庆,刘漪鸣,程卓,孙冉,梁辉. 口咽运动治疗成人阻塞性睡眠呼吸暂停低通气综合征的疗效初步观察[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 153-158. |
[12] | 张竹萍,叶琪,郭蓓,林凌. 叶酸受体阳性循环肿瘤细胞检测在喉鳞状细胞癌诊断中的应用价值[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 50-53. |
[13] | 陈尚丽,秦涛,陈璇,陈若瑾,唐智. Hcy及其代谢关键酶MTHFR C677T基因多态性与OSAHS患者高血压的相关性研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 126-133. |
[14] | 李卓君,宋西成,陈秀梅. 阻塞性睡眠呼吸暂停低通气综合征患者的肺功能变化分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 45-50. |
[15] | 王楠,黄晶,彭涛,冯勃. OSAHS与耳鸣的相关性研究现状[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 122-127. |
|