山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (2): 156-162.doi: 10.6040/j.issn.1673-3770.0.2023.409

• 综述 • 上一篇    下一篇

帕金森疾病的相关视网膜表现

王新钰1,2,高丽芬1,2,路晖2,宋文琦2,杨钰2   

  1. 1. 潍坊医学院, 山东 潍坊 261053;
    2. 淄博市中心医院 眼科, 山东 淄博 255000
  • 出版日期:2024-03-20 发布日期:2024-03-29
  • 通讯作者: 高丽芬. E-mail:gaolifen1971@163.com

Related retinal manifestations in Parkinson's disease

WANG Xinyu1,2, GAO Lifen1,2, LU Hui2, SONG Wenqi2, YANG Yu2   

  1. 1. Weifang Medical College, Weifang 261053, Shandong, China 2. Ophthalmology Department, Zibo Central Hospital, Zibo 255000, Shandong, China
  • Online:2024-03-20 Published:2024-03-29

摘要: 帕金森疾病是由α-突触核蛋白在神经系统中的异常沉积和多巴胺能神经的损伤引发运动迟缓、静止性震颤等运动症状的神经退行性疾病。由于视觉障碍在病程早期即可发现,视网膜的功能改变和结构改变可在帕金森疾病诊断和治疗策略中起到重要作用。综述探讨了帕金森病有关的的视网膜变化,如视网膜多巴胺能神经元数量减少,使用光学相干断层扫描测量的视网膜神经纤维层和黄斑变薄,视网膜电图中振幅降低和潜伏期缩短等解释帕金森病对视网膜的影响。本文认为帕金森患者视网膜异常可以作为早期评估帕金森病发病的潜在标志物,并有助于对患者进行疾病的分期,对于帕金森病的诊断和治疗策略具有重要意义。

关键词: 帕金森病, 多巴胺, 视网膜电生理, 光学相干断层扫描血管成像, 视网膜微血管

Abstract: Parkinson's disease is a neurodegenerative disorder characterized by bradykinesia, resting tremor, and other symptoms caused by abnormal α-synuclein deposition in the nervous system and dopaminergic nerve damage. As visual impairments can be detected during the early stages, functional and structural changes in the retina can play an important role in diagnosis and treatment strategies for Parkinson's disease. This review examines the retinal changes associated with Parkinson's disease, such as a decreased number of retinal dopaminergic neurons, thinning of the retinal nerve fiber layer and macula(measured by using optical coherence tomography), and a decrease in amplitude and shortening of the latency period in electroretinograms, to explain the effects of Parkinson's disease on the retina. This paper concludes that retinal abnormalities in patients with Parkinson's can be used as a potential marker for early assessment of Parkinson's disease onset and can help to stage the disease, which is important for diagnosis and therapeutic strategies.

Key words: Parkinson's disease, Dopamine, Retinal electrophysiology, Optical coherence tomography angiography, Retinal microvasculature

中图分类号: 

  • R774.1
[1] Tysnes OB, Storstein A. Epidemiology of Parkinson's disease[J]. J Neural Transm, 2017, 124(8): 901-905. doi:10.1007/s00702-017-1686-y
[2] Tansey MG, Wallings RL, Houser MC, et al. Inflammation and immune dysfunction in Parkinson disease[J]. Nat Rev Immunol, 2022, 22(11): 657-673. doi:10.1038/s41577-022-00684-6
[3] Elbaz A, Carcaillon L, Kab S, et al. Epidemiology of Parkinson's disease[J]. Rev Neurol, 2016, 172(1): 14-26. doi:10.1016/j.neurol.2015.09.012
[4] Ming W, Palidis DJ, Spering M, et al. Visual contrast sensitivity in early-stage Parkinson's disease[J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5696. doi:10.1167/iovs.16-20025
[5] Han G, Han JS, Han K, et al. Visual acuity and development of Parkinson's disease: a nationwide cohort study[J]. Mov Disord, 2020, 35(9): 1532-1541. doi:10.1002/mds.28184
[6] Postuma RB, Iranzo A, Hu M, et al. Risk and predictors of dementia and Parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study[J]. Brain, 2019, 142(3): 744-759. doi:10.1093/brain/awz030
[7] Shi C, Chen YH, Kwapong WR, et al. Characterization by fractal dimension analysis of the retinal capillary network in parkinson disease[J]. Retina, 2020, 40(8): 1483-1491. doi:10.1097/iae.0000000000002641
[8] Ridder A, Müller MLTM, Kotagal V, et al. Impaired contrast sensitivity is associated with more severe cognitive impairment in Parkinson disease[J]. Parkinsonism Relat Disord, 2017, 34: 15-19. doi:10.1016/j.parkreldis.2016.10.006
[9] Adam CR, Shrier E, Ding Y, et al. Correlation of inner retinal thickness evaluated by spectral-domain optical coherence tomography and contrast sensitivity in parkinson disease[J]. J Neuro Ophthalmol, 2013, 33(2): 137-142. doi:10.1097/wno.0b013e31828c4e1a
[10] Pellegrini M, Vagge A, Ferro Desideri LF, et al. Optical coherence tomography angiography in neurodegenerative disorders[J]. J Clin Med, 2020, 9(6): 1706. doi:10.3390/jcm9061706
[11] Marchesi N, Fahmideh F, Boschi F, et al. Ocular neurodegenerative diseases: interconnection between retina and cortical areas[J]. Cells, 2021, 10(9): 2394. doi:10.3390/cells10092394
[12] Liu H, Schaeffel F, Yang ZK, et al. GABAB receptor activation affects eye growth in chickens with visually induced refractive errors[J]. Biomolecules, 2023, 13(3): 434. doi:10.3390/biom13030434
[13] Elanwar R, Al Masry H, Ibrahim A, et al. Retinal functional and structural changes in patients with Parkinson's disease[J]. BMC Neurol, 2023, 23(1): 330. doi:10.1186/s12883-023-03373-6
[14] Roy S, Field GD. Dopaminergic modulation of retinal processing from starlight to sunlight[J]. J Pharmacol Sci, 2019, 140(1): 86-93. doi:10.1016/j.jphs.2019.03.006
[15] 刘凌,张美霞.近视的药物治疗[J].山东大学耳鼻喉眼学报, 2021. 35(4): 123-128.doi: 10.6040/j.issn.1673-3770.0.2020.313 LIU Ling, ZHANG Meixia. Drug therapy for myopia[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 123-128. doi: 10.6040/j.issn.1673-3770.0.2020.313
[16] Indrieri A, Pizzarelli R, Franco B, et al. Dopamine, alpha-synuclein, and mitochondrial dysfunctions in parkinsonian eyes[J]. Front Neurosci, 2020, 14: 567129. doi:10.3389/fnins.2020.567129
[17] Mohana Devi S, Mahalaxmi I, Aswathy NP, et al. Does retina play a role in Parkinson's disease?[J]. Acta Neurol Belg, 2020, 120(2): 257-265. doi:10.1007/s13760-020-01274-w
[18] Ortuño-Lizarán I, Sánchez-Sáez X, Lax P, et al. Dopaminergic retinal cell loss and visual dysfunction in parkinson disease[J]. Ann Neurol, 2020, 88(5): 893-906. doi:10.1002/ana.25897
[19] Zou MJ, Lian ZK, Young CA, et al. Improving effective lens position prediction for transscleral fixation of intraocular lens among congenital ectopia lentis patients[J]. Am J Ophthalmol, 2023, 252: 121-129. doi:10.1016/j.ajo.2023.03.021
[20] Ortuño-Lizarán I, Esquiva G, Beach TG, et al. Degeneration of human photosensitive retinal ganglion cells may explain sleep and circadian rhythms disorders in Parkinson's disease[J]. Acta Neuropathol Commun, 2018, 6(1): 90. doi:10.1186/s40478-018-0596-z
[21] Normando EM, Davis BM, De Groef L, et al. The retina as an early biomarker of neurodegeneration in a rotenone-induced model of Parkinson's disease: evidence for a neuroprotective effect of rosiglitazone in the eye and brain[J]. Acta Neuropathol Commun, 2016, 4(1): 86. doi:10.1186/s40478-016-0346-z
[22] Tran KKN, Wong VHY, Lim JKH, et al. Characterization of retinal function and structure in the MPTP murine model of Parkinson's disease[J]. Sci Rep, 2022, 12(1): 7610. doi:10.1038/s41598-022-11495-z
[23] Zhang YY, Zhang XG, Yue YH, et al. Retinal degeneration: a window to understand the origin and progression of Parkinson's disease?[J]. Front Neurosci, 2021, 15: 799526. doi:10.3389/fnins.2021.799526
[24] Beach TG, Carew J, Serrano G, et al. Phosphorylated α-synuclein-immunoreactive retinal neuronal elements in Parkinson's disease subjects[J]. Neurosci Lett, 2014, 571: 34-38. doi:10.1016/j.neulet.2014.04.027
[25] Ortuño-Lizarán I, Beach TG, Serrano GE, et al. Phosphorylated α-synuclein in the retina is a biomarker of Parkinson's disease pathology severity[J]. Mov Disord, 2018, 33(8): 1315-1324. doi:10.1002/mds.27392
[26] Tran KKN, Wong VHY, Hoang A, et al. Retinal alpha-synuclein accumulation correlates with retinal dysfunction and structural thinning in the A53T mouse model of Parkinson's disease[J]. Front Neurosci, 2023, 17: 1146979. doi:10.3389/fnins.2023.1146979
[27] Veys L, Vandenabeele M, Ortuño-Lizarán I, et al. Retinal α-synuclein deposits in Parkinson's disease patients and animal models[J]. Acta Neuropathol, 2019, 137(3): 379-395. doi:10.1007/s00401-018-01956-z
[28] Marrocco E, Indrieri A, Esposito F, et al. α-synuclein overexpression in the retina leads to vision impairment and degeneration of dopaminergic amacrine cells[J]. Sci Rep, 2020, 10(1): 9619. doi:10.1038/s41598-020-66497-6
[29] Murueta-Goyena A, Barrenechea M, Erramuzpe A, et al. Foveal remodeling of retinal microvasculature in Parkinson's disease[J]. Front Neurosci, 2021, 15: 708700. doi:10.3389/fnins.2021.708700
[30] Guan J, Pavlovic D, Dalkie N, et al. Vascular degeneration in Parkinson's disease[J]. Brain Pathol, 2013, 23(2): 154-164. doi:10.1111/j.1750-3639.2012.00628.x
[31] Yang PZ, Pavlovic D, Waldvogel H, et al. String vessel formation is increased in the brain of parkinson disease[J]. J Park Dis, 2015, 5(4): 821-836. doi:10.3233/jpd-140454
[32] Robbins CB, Thompson AC, Bhullar PK, et al. Characterization of retinal microvascular and choroidal structural changes in parkinson disease[J]. JAMA Ophthalmol, 2021, 139(2): 182-188. doi:10.1001/jamaophthalmol.2020.5730
[33] Christou EE, Konitsiotis S, Pamporis K, et al. Inner retinal layers' alterations of the microvasculature in early stages of Parkinson's disease: a cross sectional study[J]. Int Ophthalmol, 2023, 43(7): 2533-2543. doi:10.1007/s10792-023-02653-x
[34] Kamata Y, Hara N, Satou T, et al. Investigation of the pathophysiology of the retina and choroid in Parkinson's disease by optical coherence tomography[J]. Int Ophthalmol, 2022, 42(5): 1437-1445. doi:10.1007/s10792-021-02133-0
[35] Mello LGM, Paraguay IBB, Andrade TS, et al. Electroretinography reveals retinal dysfunction in Parkinson's disease despite normal high-resolution optical coherence tomography findings[J]. Parkinsonism Relat Disord, 2022, 101: 90-95. doi:10.1016/j.parkreldis.2022.06.018
[36] Netser R, Demmin DL, Dobkin R, et al. Flash electroretinography parameters and Parkinson's disease[J]. J Parkinsons Dis, 2021, 11(1): 251-259. doi:10.3233/JPD-191830
[37] Huang J, Li Y, Xiao JJ, et al. Combination of multifocal electroretinogram and spectral-domain OCT can increase diagnostic efficacy of Parkinson's disease[J]. Parkinsons Dis, 2018: 4163239. doi:10.1155/2018/4163239
[38] Unlu M, Gulmez Sevim D, Gultekin M, et al. Correlations among multifocal electroretinography and optical coherence tomography findings in patients with Parkinson's disease[J]. Neurol Sci, 2018, 39(3): 533-541. doi:10.1007/s10072-018-3244-2
[39] Wong C, Ishibashi T, Tucker G, et al. Responses of the pigmented rabbit retina to NMPTP, a chemical inducer of Parkinsonism[J]. Exp Eye Res, 1985, 40(4): 509-519. doi:10.1016/0014-4835(85)90073-9
[40] He SB, Liu CY, Chen LD, et al. Meta-analysis of visual evoked potential and Parkinson's disease[J]. Parkinsons Dis, 2018: 3201308. doi:10.1155/2018/3201308
[41] Kaur M, Saxena R, Singh D, et al. Correlation between structural and functional retinal changes in parkinson disease[J]. J Neuroophthalmol, 2015, 35(3): 254-258. doi:10.1097/WNO.0000000000000240
[42] Huang J, Wang QP, Li K, et al. Spectral domain OCT can differentiate the retinal morphological changes of patients with Parkinson's disease in clinical middle stages[J]. Neurol Sci, 2020, 41(7): 1909-1912. doi:10.1007/s10072-020-04266-z
[43] Yenice O, Onal S, Midi I, et al. Visual field analysis in patients with Parkinson's disease[J]. Parkinsonism Relat Disord, 2008, 14(3): 193-198. doi:10.1016/j.parkreldis.2007.07.018
[44] 李玲,季晓燕,毛成洁,等. 早期帕金森病患者视网膜及视野改变的临床研究[J]. 中华内科杂志, 2015, 54(6): 521-524. doi:10.3760/cma.j.issn.0578-1426.2015.06.010 LI Ling, JI Xiaoyan, MAO Chengjie, et al. A clinical study of changes in retina and visual field in patients with early Parkinson's disease[J]. Chinese Journal of Internal Medicine, 2015, 54(6): 521-524. doi:10.3760/cma.j.issn.0578-1426.2015.06.010
[45] Xu B, Wang X, Guo JF, et al. Retinal microvascular density was associated with the clinical progression of Parkinson's disease[J]. Front Aging Neurosci, 2022, 14: 818597. doi:10.3389/fnagi.2022.818597
[46] Zou J, Liu KC, Li FL, et al. Combination of optical coherence tomography(OCT)and OCT angiography increases diagnostic efficacy of Parkinson's disease[J]. Quant Imaging Med Surg, 2020, 10(10): 1930-1939. doi:10.21037/qims-20-460
[47] Li Y, Wang XH, Zhang YQ, et al. Retinal microvascular impairment in Parkinson's disease with cognitive dysfunction[J]. Parkinsonism Relat Disord, 2022, 98: 27-31. doi:10.1016/j.parkreldis.2022.03.008
[48] Zhou M, Wu L, Hu QY, et al. Visual impairments are associated with retinal microvascular density in patients with Parkinson's disease[J]. Front Neurosci, 2021, 15: 718820. doi:10.3389/fnins.2021.718820
[49] Kwapong WR, Ye H, Peng CL, et al. Retinal microvascular impairment in the early stages of Parkinson's disease[J]. Invest Ophthalmol Vis Sci, 2018, 59(10): 4115-4122. doi:10.1167/iovs.17-23230
[50] Zhao Y, Dai WJ, Liu DC. Quantitative analysis of related parameters of retinal nerve fiber layer and ganglion cell complex thickness in patients with different degrees of Parkinson's disease[J]. Aging Clin Exp Res, 2022, 34(10): 2355-2361. doi:10.1007/s40520-022-02211-y
[51] Zhang YF, Zhang D, Gao YZ, et al. Retinal flow density changes in early-stage Parkinson's disease investigated by swept-source optical coherence tomography angiography[J]. Curr Eye Res, 2021, 46(12): 1886-1891. doi:10.1080/02713683.2021.1933054
[52] 李颖颖, 冯洁, 李伟, 等. 缺血性脑卒中及其他神经退行性疾病对RNFL厚度的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 163-168. doi: 10.6040/j.issn.1673-3770.0.2021.273 LI Yingying, FENG Jie, LI Wei, et al. Effects of ischemic stroke and other neurodegenerative diseases on RNFL thickness[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 163-168. doi: 10.6040/j.issn.1673-3770.0.2021.273
[53] Verghese S, Berkowitz ST, Shah VM, et al. Assessment of retinal manifestations of Parkinson's disease using spectral domain optical coherence tomography: a study in Indian eyes[J]. Indian J Ophthalmol, 2022, 70(2): 448-452. doi:10.4103/ijo.IJO_1409_21
[54] Rascunà C, Cicero CE, Chisari CG, et al. Retinal thickness and microvascular pathway in Idiopathic Rapid eye movement sleep behaviour disorder and Parkinson's disease[J]. Parkinsonism Relat Disord, 2021, 88: 40-45. doi:10.1016/j.parkreldis.2021.05.031
[55] Robbins CB, Grewal DS, Thompson AC, et al. Identifying peripapillary radial capillary plexus alterations in Parkinson's disease using OCT angiography[J]. Ophthalmol Retina, 2022, 6(1): 29-36. doi:10.1016/j.oret.2021.03.006
[1] 吴丽丽,曲毅. OCTA在病理性近视脉络膜新生血管应用及其在人工智能的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 144-149.
[2] 张晓晗,魏丽,杨凯莉,陈海燕,李彦松,王平. 中医辨证论治前后CSC患者OCTA变化及其与视力的相关性研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 115-122.
[3] 李鹏伟,苏光明,刘江川,穆雅林. 光学相干断层扫描血管成像在2型黄斑毛细血管扩张症中的应用进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 140-144.
[4] 杨茹,张玉光,徐湘辉,吴雪莲,陶远,谭越. 超声乳化术对老年性白内障黄斑区视网膜结构影响的临床研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 97-102.
[5] 张昕雨,雷春燕,张美霞. 运用OCT及OCTA观察硅油对视网膜脉络膜的影响[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 132-136.
[6] 王露萍黄映湘, 王艳玲. 眼缺血综合征研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 23-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨长亮,黄治物,姚行齐,诸勇,孙艺 . 正常气骨导听性脑干反应及其应用[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 9 -13 .
[2] 曹忠良 . 颌面复合伤155例临床分析[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 89 -89 .
[3] 毕景云 . 鼻中隔矫正术后血肿的处理[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 90 -91 .
[4] 刘大昱,潘新良,雷大鹏,许风雷,张立强,栾信庸 . 梨状窝内侧壁癌的手术治疗[J]. 山东大学耳鼻喉眼学报, 2007, 21(1): 8 -11 .
[5] 楼正才 . 掌拳击伤鼓膜损伤机制及临床特点分析[J]. 山东大学耳鼻喉眼学报, 2008, 22(2): 188 -188 .
[6] 刘 艳,刘新义,王金平,李大健 . 后鼓室解剖结构测量观察及临床意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 218 -221 .
[7] 赵 敏,王守森,甄泽年,陈贤明,王茂鑫 . 鼻内镜联合显微镜行蝶窦及经蝶鞍区微创手术[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 244 -245 .
[8] 伦 杰,吕心红 . 鼻部脂溢性角化病1例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 252 -252 .
[9] 王红霞,王鹏程 . NSE、S100及GFAP在视网膜母细胞瘤中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 263 -264 .
[10] 黄 方,黄海琼,黄建强,何荷蕃 . 支气管内镜视频监视系统在小儿气管-支气管异物诊治中的应用[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 276 -277 .