山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (2): 144-149.doi: 10.6040/j.issn.1673-3770.0.2022.042
吴丽丽,曲毅
WU Lili, QU Yi
摘要: 病理性近视(pathological myopia, PM)近年来发病率增高,是世界范围内导致视力障碍的主要原因,其不仅成为全球性的公共卫生问题,并且造成了沉重的社会负担。脉络膜新生血管(choroidal neovascularization, CNV)是PM的最严重并发症之一,它可以引起眼底黄斑区病变,导致视力下降,出现暗点,视物变形,视野缺损等,如长期不治疗可能导致失明。光学相干断层扫描血管成像(optical coherence tomography angiography, OCTA)技术是一种对视网膜、脉络膜自动精确分层,通过量化血流面积、无血流面积和血流密度区域,对视网膜、脉络膜多层面进行定性、定量的检查工具。OCTA在诊断PM继发的CNV中起到很大帮助,可以较为明确地显示新生血管的位置大小等。目前对于PM引起的CNV主要治疗方法有光动力治疗及抗血管内皮生长因子治疗,OCTA可以评估PM-CNV治疗效果,论文主要就近期关于OCTA在PM-CNV的诊断及治疗中应用的研究进行综述, 并讨论其与人工智能相结合进行脉络膜显像时存在的问题与发展前景,以期为临床开展相关工作提供参考。
中图分类号:
[1] | Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. doi:10.1016/j.ophtha.2016.01.006 |
[2] | Fricke TR, Jong M, Naidoo KS, et al. Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling[J]. Br J Ophthalmol, 2018, 102(7): 855-862. doi:10.1136/bjophthalmol-2017-311266 |
[3] | 刘益帆, 贾智艳, 刘平. 青少年近视危险因素综述[J]. 国际眼科杂志, 2016, 16(7): 1276-1278. doi:10.3980/j.issn.1672-5123.2016.7.17 LIU Yifan, JIA Zhiyan, LIU Ping. Review of juvenile myopia risk factors[J]. International Eye Science, 2016, 16(7): 1276-1278. doi:10.3980/j.issn.1672-5123.2016.7.17 |
[4] | Wong TY, Ferreira A, Hughes R, et al. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review[J]. Am J Ophthalmol, 2014, 157(1): 9-25.e12. doi:10.1016/j.ajo.2013.08.010 |
[5] | Saw SM, Hong CY, Chia KS, et al. Nearwork and myopia in young children[J]. Lancet, 2001, 357(9253): 390. doi:10.1016/S0140-6736(05)71520-8 |
[6] | Saw SM, Chua WH, Wu HM, et al. Myopia: gene-environment interaction[J]. Ann Acad Med Singap, 2000, 29(3): 290-297 |
[7] | Fan Q, Barathi VA, Cheng CY, et al. Genetic variants on chromosome 1q41 influence ocular axial length and high myopia[J]. PLoS Genet, 2012, 8(6): e1002753. doi:10.1371/journal.pgen.1002753 |
[8] | Pan CW, Dirani M, Cheng CY, et al. The age-specific prevalence of myopia in Asia: a meta-analysis[J]. Optom Vis Sci, 2015, 92(3): 258-266. doi:10.1097/OPX.0000000000000516 |
[9] | Ohno-Matsui K, Kawasaki R, Jonas JB, et al. International photographic classification and grading system for myopic maculopathy[J]. Am J Ophthalmol, 2015, 159(5): 877-883.e7. doi:10.1016/j.ajo.2015.01.022 |
[10] | Ohno-Matsui K, Lai TY, Lai CC, et al. Updates of pathologic myopia[J]. Prog Retin Eye Res, 2016, 52: 156-187. doi:10.1016/j.preteyeres.2015.12.001 |
[11] | Anand S, Fan VY, Zhang JH, et al. China's human resources for health: quantity, quality, and distribution[J]. Lancet, 2008, 372(9651): 1774-1781. doi:10.1016/S0140-6736(08)61363-X |
[12] | Ruiz-Medrano J, Montero JA, Flores-Moreno I, et al. Myopic maculopathy: current status and proposal for a new classification and grading system(ATN)[J]. Prog Retin Eye Res, 2019, 69: 80-115. doi:10.1016/j.preteyeres.2018.10.005 |
[13] | Cheung CMG, Ohno-Matsui K, Wong TY, et al. Influence of myopic macular degeneration severity on treatment outcomes with intravitreal aflibercept in the MYRROR study[J]. Acta Ophthalmol, 2019, 97(5): e729-e735. doi:10.1111/aos.14035 |
[14] | Ohno-Matsui K, Ikuno Y, Lai TYY, et al. Diagnosis and treatment guideline for myopic choroidal neovascularization due to pathologic myopia[J]. Prog Retin Eye Res, 2018, 63: 92-106. doi:10.1016/j.preteyeres.2017.10.005 |
[15] | Leveziel N, Caillaux V, Bastuji-Garin S, et al. Angiographic and optical coherence tomography characteristics of recent myopic choroidal neovascularization[J]. Am J Ophthalmol, 2013, 155(5): 913-919. doi:10.1016/j.ajo.2012.11.021 |
[16] | Ohno-Matsui K, Lai TY, Lai CC, et al. Updates of pathologic myopia[J]. Prog Retin Eye Res, 2016, 52: 156-187. doi:10.1016/j.preteyeres.2015.12.001 |
[17] | 丁雯芝, 邹俊. 病理性近视脉络膜新生血管发病机制的研究进展[J]. 眼科新进展, 2014, 34(10): 987-989. doi:10.13389/j.cnki.rao.2014.0274 DING Wenzhi, ZOU Jun. Research advances in pathogenesis of choroidal neovascularization of pathologic myopia[J]. Recent Advances in Ophthalmology, 2014, 34(10): 987-989. doi:10.13389/j.cnki.rao.2014.0274 |
[18] | Kojima A, Ohno-Matsui K, Teramukai S, et al. Estimation of visual outcome without treatment in patients with subfoveal choroidal neovascularization in pathologic myopia[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2006, 244(11): 1474-1479. doi:10.1007/s00417-006-0324-4 |
[19] | Yoshida T, Ohno-Matsui K, Yasuzumi K, et al. Myopic choroidal neovascularization: a 10-year follow-up[J]. Ophthalmology, 2003, 110(7): 1297-1305. doi:10.1016/S0161-6420(03)00461-5 |
[20] | Miller DG, Singerman LJ. Natural history of choroidal neovascularization in high myopia[J]. Curr Opin Ophthalmol, 2001, 12(3): 222-224. doi:10.1097/00055735-200106000-00014 |
[21] | Yannuzzi LA, Rohrer KT, Tindel LJ, et al. Fluorescein angiography complication survey[J]. Ophthalmology, 1986, 93(5): 611-617. doi:10.1016/s0161-6420(86)33697-2 |
[22] | Kwiterovich KA, Maguire MG, Murphy RP, et al. Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study[J]. Ophthalmology, 1991, 98(7): 1139-1142. doi:10.1016/s0161-6420(91)32165-1 |
[23] | Borrelli E, Sarraf D, Freund KB, et al. OCT angiography and evaluation of the choroid and choroidal vascular disorders[J]. Prog Retin Eye Res, 2018, 67: 30-55. doi:10.1016/j.preteyeres.2018.07.002 |
[24] | Cohen SY, Miere A, Nghiem-Buffet S, et al. Clinical applications of optical coherence tomography angiography: what we have learnt in the first 3 years[J]. Eur J Ophthalmol, 2018, 28(5): 491-502. doi:10.1177/1120672117753704 |
[25] | McCarthy J, Minsky M, Rochester N, et al. A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955[J]. AI Mag, 2006, 27: 12-14. doi:10.1609/aimag.v27i4.1904 |
[26] | Lip GY, Nieuwlaat R, Pisters R, et al. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation[J]. Chest, 2010, 137(2): 263-272. doi:10.1378/chest.09-1584 |
[27] | Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410. doi:10.1001/jama.2016.17216 |
[28] | Yim J, Chopra R, Spitz T, et al. Predicting conversion to wet age-related macular degeneration using deep learning[J]. Nat Med, 2020, 26(6): 892-899. doi:10.1038/s41591-020-0867-7 |
[29] | Li ZX, He YF, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs[J]. Ophthalmology, 2018, 125(8): 1199-1206. doi:10.1016/j.ophtha.2018.01.023 |
[30] | Garcia GP, Lavieri MS, Andrews C, et al. Accuracy of Kalman filtering in forecasting visual field and intraocular pressure trajectory in patients with ocular hypertension[J]. JAMA Ophthalmol, 2019, 137(12): 1416-1423. doi:10.1001/jamaophthalmol.2019.4190 |
[31] | Sayanagi K, Hara C, Fukushima Y, et al. Flow pattern and perforating vessels in three different phases of myopic choroidal neovascularization seen by swept-source optical coherence tomography angiography[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2021, 259(9): 2615-2624. doi:10.1007/s00417-021-05134-y |
[32] | Li SS, Sun LM, Zhao XJ, et al. Assessing the activity of myopic choroidal neovascularization: comparison between optical coherence tomography angiography and dye angiography[J]. Retina, 2020, 40(9): 1757-1764. doi:10.1097/IAE.0000000000002650 |
[33] | Bruyère E, Miere A, Cohen SY, et al. Neovascularization secondary to high myopia imaged by optical coherence tomography angiography[J]. Retina, 2017, 37(11): 2095-2101. doi:10.1097/IAE.0000000000001456 |
[34] | Lai TYY, Cheung CMG. Myopic choroidal neovascularization: diagnosis and treatment[J]. Retina, 2016, 36(9): 1614-1621. doi:10.1097/IAE.0000000000001227 |
[35] | Muakkassa NW, Chin AT, de Carlo T, et al. Characterizing the effect of anti-vascular endothelial growth factor therapy on treatment-naive choroidal neovascularization using optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2252-2259. doi:10.1097/IAE.0000000000000836 |
[36] | Querques L, Giuffrè C, Corvi F, et al. Optical coherence tomography angiography of myopic choroidal neovascularisation[J]. Br J Ophthalmol, 2017, 101(5): 609-615. doi:10.1136/bjophthalmol-2016-309162 |
[37] | Mao JB, Shao YR, Yu JF, et al. Macular density alterations in myopic choroidal neovascularization and the effect of anti-VEGF on it[J]. Int J Ophthalmol, 2021, 14(8): 1205-1212. doi:10.18240/ijo.2021.08.11 |
[38] | Uematsu S, Sakaguchi H, Sayanagi K, et al. Association between choriocapillaris flow deficit and choroidal neovascularization activity in eyes with myopic choroidal neovascularization[J]. Sci Rep, 2021, 11(1): 21947. doi:10.1038/s41598-021-01557-z |
[39] | Cohen SY, Tabary S, El Ameen A, et al. Vascular remodeling of choroidal neovascularization in older myopic patients treated with ranibizumab[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2019, 257(3): 485-493. doi:10.1007/s00417-018-04205-x |
[40] | Cheng LN, Lin YX, Liu L, et al. Assessment of conbercept therapy for high myopia macular neovascularization by optical coherence tomography angiography[J]. Sci Rep, 2020, 10(1): 16959. doi:10.1038/s41598-020-74073-1 |
[41] | Cennamo G, Montorio D, Mazzella G, et al. Retinal and choriocapillaris vascular changes in patients affected by different clinical phenotypes of β-thalassemia: an optical coherence tomography angiography study[J]. Biology, 2021, 10(4): 276. doi:10.3390/biology10040276 |
[42] | Giorno P, Iacono P, Scarinci F, et al. Microvasculature changes of myopic choroidal neovascularization and the predictive value of feeder vessel disappearance after ranibizumab treatment revealed using optical coherence tomography angiography[J]. Ophthalmologica, 2020, 243(4): 263-270. doi:10.1159/000504755 |
[43] | Ueda-Consolvo T, Shibuya N, Oiwake T, et al. Using optical coherence tomography angiography to guide myopic choroidal neovascularization treatment: a 3-year follow-up study[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2021, 259(11): 3295-3303. doi:10.1007/s00417-021-05270-5 |
[44] | Wang J, Hormel TT, Gao LQ, et al. Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning[J]. Biomed Opt Express, 2020, 11(2): 927-944. doi:10.1364/BOE.379977 |
[45] | Sawai, Miyata M, Uji A, et al. Usefulness of denoising process to depict myopic choroidal neovascularisation using a single optical coherence tomography angiography image[J]. Sci Rep, 2020, 10(1): 6172. doi:10.1038/s41598-020-62607-6 |
[1] | 王新钰,高丽芬,路晖,宋文琦,杨钰. 帕金森疾病的相关视网膜表现[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 156-162. |
[2] | 张一彤,李青香,石争浩,尚磊,袁钰淇,曹子讷,麻莉娜,刘海琴,任晓勇,施叶雯. 阻塞性睡眠呼吸暂停儿童睡眠结构研究及睡眠结构判读模型建立[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 126-132. |
[3] | 张晓晗,魏丽,杨凯莉,陈海燕,李彦松,王平. 中医辨证论治前后CSC患者OCTA变化及其与视力的相关性研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 115-122. |
[4] | 杜曰山一,王鲜,张国明. 人工智能辅助早产儿视网膜病变诊疗新进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 157-162. |
[5] | 初宝睿,曲毅. 载siIKKβ脂质纳米粒的制备及其对巨噬细胞再极化的作用[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 91-97. |
[6] | 刘佳钰,樊慧明,邹游,陈始明. 人工智能在鼻咽癌诊断与治疗中的应用研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 135-142. |
[7] | 李鹏伟,苏光明,刘江川,穆雅林. 光学相干断层扫描血管成像在2型黄斑毛细血管扩张症中的应用进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 140-144. |
[8] | 杨茹,张玉光,徐湘辉,吴雪莲,陶远,谭越. 超声乳化术对老年性白内障黄斑区视网膜结构影响的临床研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 97-102. |
[9] | 张陶然,王薇,李明铭,黄映湘. IVR治疗mCNV患者黄斑中心凹下脉络膜厚度分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 68-71. |
[10] | 华红利,李松,陶泽璋. 人工智能在鼻咽癌诊疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 113-119. |
[11] | 王迪,程金章,于丹. 基于机器学习的人工智能技术在耳鼻喉科临床诊疗中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 125-131. |
[12] | 张昕雨,雷春燕,张美霞. 运用OCT及OCTA观察硅油对视网膜脉络膜的影响[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 132-136. |
[13] | 任雨馨,赵博军. 病理性近视脉络膜新生血管的诊断与治疗[J]. 山东大学耳鼻喉眼学报, 2020, 34(5): 157-162. |
[14] | 王露萍黄映湘, 王艳玲. 眼缺血综合征研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 23-27. |
[15] | 陈海兵, 卫亚楠, 许晓泉, 陈曦. 基于XGBoost人工智能结合CT构建甲状腺癌颈部淋巴结转移预测模型[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 40-45. |
|