山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (3): 38-44.doi: 10.6040/j.issn.1673-3770.0.2024.037
• 上海市第六人民医院耳鼻咽喉头颈外科献礼“六院120周年”纪念专题 • 上一篇
卫志成,彭裕,沈力,李莉琳,沈杭东,李馨仪,许华俊,关建
WEI Zhicheng, PENG Yu, LI Lilin, SHEN Hangdong, LI Xinyi, XU Huajun, GUAN Jian
摘要: 目的 犬尿氨酸是色氨酸代谢途径重要产物,介导多种病理生理活动。本研究旨在探究阻塞性睡眠呼吸暂停(obstructive sleep apnea, OSA)严重程度及肝功能损伤与血清犬尿氨酸的关系。 方法 从2019年1月至2019年6月因打鼾就诊于上海交通大学医学院附属第六人民医院睡眠中心的200例疑似OSA受试者中筛选出142例患者纳入研究。收集人体测量数据、生化指标、睡眠监测数据,并检测血清犬尿氨酸、吲哚胺-2,3-双加氧酶1(indoleamine-2,3-dioxygenase 1, IDO1)、丙氨酸氨基转移酶(alanine aminotransferase, ALT)、天门冬氨酸氨基转移酶(aspartate aminotransferase, AST)水平。分析评估睡眠参数、犬尿氨酸、ALT和AST之间的相关性因素及中介因素。 结果 线性回归分析在校正性别、年龄、体重指数(body mass index, BMI)后结果显示, 呼吸暂停-低通气指数(apnea-hypopnea index, AHI)、最低氧饱和度(lowest oxygen saturation, LSpO2)、氧饱和度指数(oxygen desaturation index, ODI)、犬尿氨酸是ALT的独立相关因素;AHI、平均氧饱和度(mean oxygen saturation, MSpO2)、LSpO2、ODI、睡眠时氧饱和度低于90%的时间占总监测时间的百分比(the cumulative sleep time at SpO2<90%,CT90)、犬尿氨酸是AST的独立相关因素。中介分析显示,犬尿氨酸可分别解释AHI、MSpO2、LSpO2和ODI对OSA患者血清AST影响的50.0%、43.0%、54.4%和52.4%。 结论 犬尿氨酸在OSA引起的肝功能损伤中发挥着重要的中介作用,可能是一种潜在的治疗靶点。
中图分类号:
| [1] Benjafield AV, Ayas NT, Eastwood PR, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis[J]. Lancet Respir Med, 2019, 7(8): 687-698. doi:10.1016/S2213-2600(19)30198-5 [2] Heinzer R, Vat S, Marques-Vidal P, et al. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study[J]. Lancet Respir Med, 2015, 3(4): 310-318. doi:10.1016/S2213-2600(15)00043-0 [3] 任晓勇. 阻塞性睡眠呼吸暂停合并症的研究现状和未来展望[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 1-5, 23. doi:10.6040/j.issn.1673-3770.0.2023.184 REN Xiaoyong. Current status and future perspectives of research on obstructive sleep apnea comorbidities[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 1-5, 23. doi:10.6040/j.issn.1673-3770.0.2023.184 [4] Jin YX, Wang BY, Wang XL, et al. Relationship between obstructive sleep apnea and liver abnormalities in older patients: a cross-sectional study[J]. Int J Clin Pract, 2023, 2023: 9310588. doi:10.1155/2023/9310588 [5] Hernández A, Geng YN, Sepúlveda R, et al. Chemical hypoxia induces pro-inflammatory signals in fat-laden hepatocytes and contributes to cellular crosstalk with Kupffer cells through extracellular vesicles[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(6): 165753. doi:10.1016/j.bbadis.2020.165753 [6] Mesarwi OA, Loomba R, Malhotra A. Obstructive sleep apnea, hypoxia, and nonalcoholic fatty liver disease[J]. Am J Respir Crit Care Med, 2019, 199(7): 830-841. doi:10.1164/rccm.201806-1109TR [7] Li CW, Lin JH, Chen QS, et al. Identification and characterization of circular RNAs expression profiles in obstructive sleep apnea-induced liver injury[J]. Aging, 2024, 16(7): 6262-6272. doi:10.18632/aging.205701 [8] Chen LD, Huang ZW, Huang YZ, et al. Untargeted metabolomic profiling of liver in a chronic intermittent hypoxia mouse model[J]. Front Physiol, 2021, 12: 701035. doi:10.3389/fphys.2021.701035 [9] Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease[J]. Cell Host Microbe, 2018, 23(6): 716-724. doi:10.1016/j.chom.2018.05.003 [10] Aung O, Amorim MR, Mendelowitz D, et al. Revisiting the role of serotonin in sleep-disordered breathing[J]. Int J Mol Sci, 2024, 25(3): 1483. doi:10.3390/ijms25031483 [11] Shayesteh S, Guillemin GJ, Rashidian A, et al. 1-Methyl tryptophan, an indoleamine 2, 3-dioxygenase inhibitor, attenuates cardiac and hepatic dysfunction in rats with biliary cirrhosis[J]. Eur J Pharmacol, 2021, 908: 174309. doi:10.1016/j.ejphar.2021.174309 [12] Dorochow E, Kraus N, Chenaux-Repond N, et al. Differential lipidomics, metabolomics and immunological analysis of alcoholic and non-alcoholic steatohepatitis in mice[J]. Int J Mol Sci, 2023, 24(12): 10351. doi:10.3390/ijms241210351 [13] Rojas IY, Moyer BJ, Ringelberg CS, et al. Kynurenine-induced aryl hydrocarbon receptor signaling in mice causes body mass gain, liver steatosis, and hyperglycemia[J]. Obesity, 2021, 29(2): 337-349. doi:10.1002/oby.23065 [14] Yang RN, Gao N, Chang Q, et al. The role of IDO, IL-10, and TGF-β in the HCV-associated chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma[J]. J Med Virol, 2019, 91(2): 265-271. doi:10.1002/jmv.25083 [15] Kiens O, Taalberg E, Ivanova V, et al. The effect of obstructive sleep apnea on peripheral blood amino acid and biogenic amine metabolome at multiple time points overnight[J]. Sci Rep, 2021, 11(1): 10811. doi:10.1038/s41598-021-88409-y [16] Lam CS, Li JJ, Tipoe GL, et al. Monoamine oxidase A upregulated by chronic intermittent hypoxia activates indoleamine 2, 3-dioxygenase and neurodegeneration[J]. PLoS One, 2017, 12(6): e0177940. doi:10.1371/journal.pone.0177940 [17] Ho V, Crainiceanu CM, Punjabi NM, et al. Calibration model for apnea-hypopnea indices: impact of alternative criteria for hypopneas[J]. Sleep, 2015, 38(12): 1887-1892. doi:10.5665/sleep.5234 [18] Chung KF. Use of the Epworth Sleepiness Scale in Chinese patients with obstructive sleep apnea and normal hospital employees[J]. J Psychosom Res, 2000, 49(5): 367-372. doi:10.1016/s0022-3999(00)00186-0 [19] 李蓥滢,林蒙蒙,曹波,等. 免疫应激介导的淫羊藿苷协同补骨脂甲素致特异质肝损伤的拟靶向代谢组学研究[J]. 科学通报, 2023, 68(33): 4570-4584. doi: 10.1360/TB-2023-0675 LI Yingying, LIN Mengmeng, CAO Bo, et al. Investigation of synergistic induction of idiosyncratic drug-induced liver injury by Bavachin and Icariin under immunological stress conditions using pseudotargeted metabonomics[J]. Chinese Science Bulletin, 2023,68(33):4570-4584. doi: 10.1360/TB-2023-0675 [20] Zhang L, Zhang XL, Meng H, et al. Obstructive sleep apnea and liver injury in severely obese patients with nonalcoholic fatty liver disease[J]. Schlaf Atmung, 2020, 24(4): 1515-1521. doi:10.1007/s11325-020-02018-z [21] Di Sessa A, Messina G, Bitetti I, et al. Cardiometabolic risk profile in non-obese children with obstructive sleep apnea syndrome[J]. Eur J Pediatr, 2022, 181(4): 1689-1697. doi:10.1007/s00431-021-04366-8 [22] Tang HY, Lv FR, Zhang P, et al. The impact of obstructive sleep apnea on nonalcoholic fatty liver disease[J]. Front Endocrinol, 2023, 14: 1254459. doi:10.3389/fendo.2023.1254459 [23] 王海鹏, 邹娟娟, 高春苗, 等. OSAHS慢性间歇性低氧大鼠模型的建立及意义[J]. 山东大学学报(医学版), 2021, 59(2): 7-13. doi: 10.6040 /j.issn.1671-7554.0. 2020.1469 WANG Haipeng, ZOU Juanjuan, GAO Chunmiao, et al. Construction and significance of a rat model of OSAHS with chronic intermittent hypoxia[J]. Journal of Shandong University(Health Sciences), 2021, 59(2): 7-13. doi: 10.6040 /j.issn.1671-7554.0. 2020.1469 [24] Zhang HN, Peng L, Wang YF, et al. Extracellular vesicle-derived miR-144 as a novel mechanism for chronic intermittent hypoxia-induced endothelial dysfunction[J]. Theranostics, 2022, 12(9): 4237-4249. doi:10.7150/thno.69035 [25] Mohamed B, Yarlagadda K, Self Z, et al. Obstructive sleep apnea and stroke: determining the mechanisms behind their association and treatment options[J]. Transl Stroke Res, 2024, 15(2): 239-332. doi:10.1007/s12975-023-01123-x [26] Baguet JP, Barone-Rochette G, Tamisier R, et al. Mechanisms of cardiac dysfunction in obstructive sleep apnea[J]. Nat Rev Cardiol, 2012, 9(12): 679-688. doi:10.1038/nrcardio.2012.141 [27] Xue C, Li GL, Zheng QX, et al. Tryptophan metabolism in health and disease[J]. Cell Metab, 2023, 35(8): 1304-1326. doi:10.1016/j.cmet.2023.06.004 [28] Salminen A. Role of indoleamine 2, 3-dioxygenase 1(IDO1)and kynurenine pathway in the regulation of the aging process[J]. Ageing Res Rev, 2022, 75: 101573. doi:10.1016/j.arr.2022.101573 [29] Lv RJ, Liu XY, Zhang Y, et al. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome[J]. Signal Transduct Target Ther, 2023, 8(1): 218. doi:10.1038/s41392-023-01496-3 [30] Yi MH, Zhao WC, Fei QM, et al. Causal analysis between altered levels of interleukins and obstructive sleep apnea[J]. Front Immunol, 2022, 13: 888644. doi:10.3389/fimmu.2022.888644 [31] Unnikrishnan D, Jun J, Polotsky V. Inflammation in sleep apnea: an update[J]. Rev Endocr Metab Disord, 2015, 16(1): 25-34. doi:10.1007/s11154-014-9304-x [32] Kim YS, Ko B, Kim DJ, et al. Induction of the hepatic aryl hydrocarbon receptor by alcohol dysregulates autophagy and phospholipid metabolism via PPP2R2D[J]. Nat Commun, 2022, 13(1): 6080. doi:10.1038/s41467-022-33749-0 [33] Modoux M, Rolhion N, Mani S, et al. Tryptophan metabolism as a pharmacological target[J]. Trends Pharmacol Sci, 2021, 42(1): 60-73. doi:10.1016/j.tips.2020.11.006 |
| [1] | 王小清,王钰彧,仇金玮,许金侠,朱梅. 口面肌功能训练对鼾声患者鼾声指标及睡眠质量的影响[J]. 山东大学耳鼻喉眼学报, 2025, 39(2): 101-107. |
| [2] | 刘莲莲,李进让. 阻塞性睡眠呼吸暂停与咽喉反流[J]. 山东大学耳鼻喉眼学报, 2024, 38(6): 15-22. |
| [3] | 罗露,周恩,肖旭平,林志强,方志杰,吕晓虹. 等离子点状激发技术在儿童OSA扁桃体腺样体切除术联合围手术期快速康复中的应用[J]. 山东大学耳鼻喉眼学报, 2024, 38(5): 26-30. |
| [4] | 赵云,滕支盼,李琦,沈小飞. 儿童腺样体扁桃体切除后圆枕增生26例[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 43-48. |
| [5] | 王桂芳,李仁高,马青. H-UPPP联合低温等离子舌根射频消融术对OSAHS患者血氧饱和度及动脉血氧分压的影响[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 49-54. |
| [6] | 任晓勇. 阻塞性睡眠呼吸暂停合并症的研究现状和未来展望[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 1-5. |
| [7] | 胡婷婷,王越华. 阻塞性睡眠呼吸暂停与乳腺癌相关性研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 41-45. |
| [8] | 朱雅欣,刘峰,关建,殷善开. 儿童扁桃体腺样体肥大组织淋巴细胞改变的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 62-67. |
| [9] | 王璐,张云云,郭华,崔小川. 脂质代谢标志物在早期筛查阻塞性睡眠呼吸暂停患者中阿尔兹海默症的应用价值[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 68-74. |
| [10] | 王磊,李保卫,王刚,刘红丹,韩浩伦,张晓丽,吴玮. 阻塞性睡眠呼吸暂停低通气综合征患者夜间碱反流初步研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 75-79. |
| [11] | 王腾,余林,李穗. 血清γ-谷氨酰基转移酶与阻塞性睡眠呼吸暂停综合征伴发高血压的相关性研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 80-84. |
| [12] | 袁钰淇,曹子讷,牛晓欣,谢雨杉,苏永龙,朱思敏,张一彤,刘海琴,任晓勇,施叶雯. 外周血炎症指标在阻塞性睡眠呼吸暂停低通气综合征伴高血压中的临床意义[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 85-92. |
| [13] | 王钰彧,朱梅. 体位性睡眠呼吸暂停患者的临床特点及其与低觉醒阈值的相关性研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 101-105. |
| [14] | 邢亮,袁钰淇,谢雨杉,苏永龙,牛晓欣,麻莉娜,王子桐,刘海琴,施叶雯,任晓勇. 不同觉醒阈值阻塞性睡眠呼吸暂停低通气患者对血气、糖脂代谢水平的影响[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 106-111. |
| [15] | 张玉焕,张俊波,尹国平,袁雪梅,曹鑫,孙宇,陈强,叶京英. 鼾症患者前后半夜多导睡眠监测参数的对比分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 112-117. |
|
||