山东大学耳鼻喉眼学报 ›› 2017, Vol. 31 ›› Issue (5): 72-78.doi: 10.6040/j.issn.1673-3770.0.2017.297

• 论著 • 上一篇    下一篇

一氧化氮对鼻咽癌CNE-2细胞株化疗增敏效应的研究

张彩霞1,2,刘阳云1,江文1,刘庚勋1,曹杭1,陈琼1,张纪帅1   

  1. 1.解放军第一六三中心医院/湖南师范大学医学院第二附属医院 耳鼻咽喉头颈外科, 湖南 长沙 410003;
    2.广西医科大学第四附属医院 柳州市工人医院耳鼻咽喉头颈外科, 广西 柳州 545000
  • 收稿日期:2017-07-07 出版日期:2017-10-16 发布日期:2017-10-16
  • 通讯作者: 刘阳云. E-mail:879418362@qq.com
  • 基金资助:
    湖南省教育厅科研项目(14C0697)

Investigation of chemosensitization induced by nitric oxide on nasopharyngeal carcinoma CNE-2 cells.

ZHANG Caixia1,2, LIU Yangyun1, JIANG Wen1, LIU Gengxun1, CAO Hang1, CHEN Qiong1, ZHANG Jishuai1   

  1. Department of Otolaryngology, 1. No.163 Hospital of PLA /The Second Affiliated Hospital of Hunan Normal University Medical College, Changsha 410003, Hunan, China;2. Liuzhou Workers Hospital / Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
  • Received:2017-07-07 Online:2017-10-16 Published:2017-10-16

摘要: 目的 探讨外源性一氧化氮(NO)在顺铂(DDP)作用于CNE-2细胞的过程中是否存在增敏效应,为提高鼻咽癌化疗疗效提供实验和理论依据。 方法 分别使用不同浓度NO供体药物硝普钠(SNP)、DDP及二者联合干预CNE-2细胞,采用硝酸还原酶法检测NO的浓度,镜下观察细胞形态学变化,CCK-8法检测细胞增殖抑制率以及流式细胞仪检测细胞凋亡。 结果 (1) SNP呈浓度依赖方式抑制CNE-2细胞的增殖、促进凋亡;(2) 上清液中NO浓度与SNP浓度呈正相关,有统计学意义(r=0.968, P<0.001);(3) DDP+SNP联合组与SNP组和DDP组相比,CNE-2细胞形态学差异显著, 漂浮细胞显著增多,贴壁数量逐渐减少并失去原有形态;(4) 当SNP 600 μmol/L时对细胞增殖无明显影响,然而联合DDP后较单用DDP组细胞抑制率显著提高(t=9.049, P<0.001);(5) SNP组与DDP联用时CNE-2细胞凋亡率上升,较单用SNP、DDP组显著增强(t=-19.816, P<0.001; t=-5.242, P=0.035)。 结论 外源性NO能抑制CNE-2的增殖,其抑制效应与NO浓度呈正相关;合适浓度的外源性NO可在对细胞本身不产生明显毒性的情况下显著增强DDP对CNE-2细胞株的化疗敏感性。

关键词: 鼻咽癌, 顺铂, 化疗增敏, 一氧化氮, 硝普钠, 凋亡

Abstract: Objective To investigate whether exogenous nitric oxide(NO)could increase chemosensitization to cisplatin(DDP)in CNE2 cells, and to provide an experimental and theoretical basis for improving the effectiveness of chemotherapy for nasopharyngeal carcinoma. Methods CNE-2 cells were treated with various concentrations of sodium nitroprusside(SNP), DDP, and both chemicals. The nitrate reductase method was used to detect the concentration of NO. Morphological changes of cells were observed using an inverted phase contrast microscope and CCK8 assays were used to examine the viability of cells. Flow cytometry was applied to detect apoptosis in NPC cells. Results (1)The concentration of NO was positively correlated with the concentration of SNP, and this correlation was statistically significant(r=0.968, P<0.05).(2)Compared with the CNE-2 cells in the SNP group, DDP group, and control group, the CNE-2 cells in the DDP+SNP group showed more extensive morphological changes.(3)The inhibitory effects of SNP+DDP were significantly greater than those of SNP or DDP alone(P<0.05).(4)Compared with the groups treated with SNP or DDP individually, flow cytometry showed that the apoptosis rate of CNE-2 cells was significantly higher in the group treated with both SNP and DDP(P<0.05). Conclusion Exogenous NO can inhibit CNE-2 proliferation, and the inhibitory effect was positively correlated with the concentration of NO. The proper concentration of exogenous NO can significantly enhance the chemosensitivity of CNE-2 cells to DDP, without substantial toxicity.

Key words: Nasopharyngeal carcinoma, Sodium nitroprusside, Cis-platinum, Apoptosis, Chemosensitization, Nitric oxide

中图分类号: 

  • R739.62
[1] Tan G, Tang X, Tang F. The role of microRNAs in nasopharyngeal carcinoma[J]. Tumour Biol, 2015, 36(1):69-79.
[2] Razak AR, Siu LL, Liu FF, et al. Nasopharyngeal carcinoma: the next challenges[J]. Eur J Cancer, 2010, 46(11):1967-1978.
[3] Lee AW, Lin JC, Ng WT. Current management of nasopharyngeal cancer[J]. Semin Radiat Oncol, 2012, 22(3):233-244.
[4] Perri F, Bosso D, Buonerba C, et al. Locally advanced nasopharyngeal carcinoma: current and emerging treatment strategies[J]. World J Clin Oncol, 2011, 2(12):377-383.
[5] Zhang L, Chen QY, Liu H, et al. Emerging treatment options for nasopharyngeal carcinoma[J]. Drug Des Devel Ther, 2013, 7(2):37-52.
[6] 张彩霞, 刘阳云. 一氧化氮对肿瘤细胞化疗增敏机制研究进展[J]. 临床与病理杂志,2016,36(8):1224-1229. ZHANG Caixia, LIU Yangyun. Research progress of nitric oxide chemosensitization mechanisms on tumor cells[J]. Inter J Pathol Clin Med, 2013, 7(2):37-52.
[7] Yang L, Lan C, Fang Y, et al. Sodium nitroprusside(SNP)sensitizes human gastric cancer cells to TRAIL-induced apoptosis[J]. Int Immunopharmacol, 2013, 17(2):383-389.
[8] Seabra AB, de Lima R, Calderón M. Nitric oxide releasing nanomaterials for cancer treatment: current status and perspectives[J]. Curr Top Med Chem, 2015, 15(4):298-308.
[9] Zhang HX, Deng C, Liu OS, et al. Inducible nitric oxide inhibitor enhances the anti-tumor effect of cisplatin on CNE-2 cells by inducing cell apoptosis[J]. Eur Rev Med Pharmacol Sci, 2014, 18(19):2789-2797.
[10] 刘阳云, 赵素萍, 刘庚勋, 等. 诱导型一氧化氮合酶在指导晚期鼻咽癌治疗方案选择中的价值[J]. 中国癌症杂志,2007,17(9):684-688. LIU Yangyun, ZHAO Suping, LIU Gengxun, et al. The value of inducible nitric oxide synthase to select the project of treatment in nasopharyngeal carcinoma[J]. Chin Oncol, 2007, 17(9):684-688.
[11] 刘阳云, 赵素萍, 刘庚勋, 等. 诱导型一氧化氮合酶与环氧合酶-2在鼻咽癌中表达的初步研究[J]. 中华放射肿瘤学杂志,2007,16(2):155-156.
[12] Mocellin S. Nitric oxide: cancer target or anticancer agent?[J]. Curr Cancer Drug Targets, 2009, 9(2):214-236.
[13] 张彩霞,刘阳云. 一氧化氮供体型化合物化疗增敏效应[J]. 国际肿瘤学杂志,2016,43(9):53-56. ZHANG Caixia, LIU Yangyun. Neoplasms chemosensitization enhancing effects of nitric oxide donor compounds[J]. J Int Oncol, 2016, 43(9):53-56.
[14] Hirst D, Robson T. Nitric oxide in cancer therapeutics: interaction with cytotoxic chemotherapy[J]. Curr Pharm Des, 2010, 16(4):411-420.
[15] Carradori S, Mollica A, Monte CD, et al. Nitric oxide donors and selective carbonic anhydrase inhibitors: a dual pharmacological approach for the treatment of glaucoma, cancer and osteoporosis[J]. Molecules, 2015, 20(4):5667-5679.
[16] Reynolds MM, Witzeling SD, Damodaran VB, et al. Applications for nitric oxide in halting proliferation of tumor cells[J]. Biochem Biophys Res Commun, 2013, 4(31):647-651.
[17] Persson PB, Bondke Persson A. Nitric oxide: a classic revisited[J]. Acta Physiol, 2013, 207(3):427-429.
[18] Aranda E, López-Pedrera C, De La Haba-Rodriguez JR, et al. Nitric oxide and cancer: the emerging role of S-nitrosylation[J]. Curr Mol Med, 2012, 12(1):50-67.
[19] Singh S, Gupta AK. Nitric oxide: role in tumour biology and iNOS/NO-based anticancer therapies[J]. Cancer Chemother Pharmacol, 2011, 67(6):1211-1224.
[20] González R1, Ferrín G, Aguilar-Melero P, et al. Targeting hepatoma using nitric oxide donor strategies[J]. Antioxid Redox Signal, 2013, 18(5):491-506.
[21] Huerta-Yepez S, Baritaki S, Baay-Guzman G, et al. Contribution of either YY1 or Bcl XL-induced inhibition by the NO-donor DETANONOate in the reversal of drug resistance, both in vitro and in vivo. YY1 and BclXL are overexpressed in prostate cancer[J]. Nitric Oxide Soc, 2013, 29(1):17-24.
[22] Bian K, Murad F. sGC-cGMP signaling: target for anticancer therapy[J]. Adv Exp Med Biol, 2014, 14(8):5-13.
[23] Bian K, Murad F. What is next in nitric oxide research? From cardiovascularsystem to cancer biology[J]. Nitric Oxide, 2014, 4(3):3-7.
[24] Bonavida B, Garban H. Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics[J]. Redox Biol, 2015, 10(6):486-494.
[25] Sarti P, Forte E, Mastronicola D, et al. Cytochrome c oxidaseand nitric oxide in action: molecular mechanisms and pathophysiological implications[J]. Biochim Biophys Acta, 2012, 18(7):610-619.
[26] Bonavida B, Baritaki S. The novel role of yin yang 1 in the regulation of epithelial to mesenchymal transition in cancer via the dysregulated NF-κB/Snail/YY1/RKIP/PTEN circuitry[J]. Crit Rev Oncog, 2011, 16(4):211-226.
[27] Baritaki S, Huerta-Yepez S, Sahakyan A, et al. Mechanisms of nitric oxide-mediated inhibition of EMT in cancer: inhibition of the metastasis-inducer snail and induction of the metastasis-suppressor RKIP[J]. Cell Cycle, 2010, 12(9):4931-4940.
[28] Tang H, Park S, Sun SC, et al. Kolcgnaling components of the IκB kinase complex[J]. FEBS Lett, 2010, 5(8):662-668.
[29] Domingo E, Church DN, Sieber O, et al. Evaluation of PIK3 CA mutation as a predictor of benefit from nonsteroidal anti-inflammatory drug therapy in colorectal cancer[J]. J Clin Oncol, 2013, 31(4):4297-4234.
[1] 苏杰,艾昕,马春梅,杨馥宇,黄帅. 急性高眼压大鼠外侧膝状体神经元细胞自噬与凋亡的关系[J]. 山东大学耳鼻喉眼学报, 2018, 32(4): 68-71.
[2] 赵小燕,吴彩琴,任晓勇,王正辉. 白花蛇舌草多糖提取物诱导Hep-2细胞凋亡与抑制侵袭机制[J]. 山东大学耳鼻喉眼学报, 2018, 32(2): 84-87.
[3] 周毅波,龚小蓉,于锋. MiR-150调控Nanog对鼻咽癌侧群细胞增殖、侵袭的影响[J]. 山东大学耳鼻喉眼学报, 2017, 31(5): 79-84.
[4] 陈婷婷,郭其云,刘佳琪,刘丽庭. 探讨同期放化疗对儿童青少年鼻咽癌患者生活质量的影响[J]. 山东大学耳鼻喉眼学报, 2017, 31(2): 55-58.
[5] 周华群,张立庆,徐朝琪,姜盼,王愿,刘晓静,董伟达. 姜黄素联合白藜芦醇抑制人头颈部肿瘤细胞系增殖的机制研究[J]. 山东大学耳鼻喉眼学报, 2017, 31(2): 67-72.
[6] 于斌,郑青平,罗展雄,李旌,周媛媛,李中华,王磊黎,贺婵娟,石丰榕. 重组人表皮生长因子预防鼻咽癌放射性口腔黏膜炎和急性放射性皮炎的疗效观察[J]. 山东大学耳鼻喉眼学报, 2017, 31(1): 95-99.
[7] 王雅宁,耿博,李百彦,崔朝阳,王启荣. 鼻咽癌放疗后颅底骨感染坏死的治疗体会[J]. 山东大学耳鼻喉眼学报, 2016, 30(6): 42-45.
[8] 李钦,陈彦林,马焱燚,张永东. γ干扰素对变应性鼻炎大鼠鼻腔灌洗液中嗜酸粒细胞凋亡及Eotaxin水平的影响[J]. 山东大学耳鼻喉眼学报, 2016, 30(4): 30-33.
[9] 王桂香,王蓬鹏,唐力行,张亚梅,张杰,葛文彤. 变应性鼻炎儿童鼻呼出气一氧化氮浓度测定方法初探[J]. 山东大学耳鼻喉眼学报, 2016, 30(1): 14-16.
[10] 王君影,李晓峰. 小牛血去蛋白提取物眼用凝胶对鼻咽癌放射治疗后眼角膜内皮细胞损伤的影响[J]. 山东大学耳鼻喉眼学报, 2016, 30(1): 76-79.
[11] 赵燕恋, 卢永田, 杨继红, 张娟, 苗芳芳, 李洁萍. 鼻咽癌EGFL7的表达与肿瘤侵袭转移的关系[J]. 山东大学耳鼻喉眼学报, 2015, 29(6): 31-35.
[12] 车娟, 赵洪春, 李金玲, 王延飞. D-二聚体与鼻咽癌预后的关系[J]. 山东大学耳鼻喉眼学报, 2015, 29(5): 47-49.
[13] 周慧, 黄雪琴, 胡俊丽, 姚俊, 张月飞, 江枫. 黄芩苷对鼻咽癌化疗期间激素使用影响的实验研究[J]. 山东大学耳鼻喉眼学报, 2014, 28(4): 30-32.
[14] 刘淑君, 代秀玉, 刘少义, 王文亭, 李元彬. Survivin在后发性白内障动物模型中的表达[J]. 山东大学耳鼻喉眼学报, 2014, 28(4): 81-84.
[15] 秦杰升1,王挥戈1,林心强1,洪良利2. 鼻息肉中IL-15mRNA的表达及其作用[J]. 山东大学耳鼻喉眼学报, 2014, 28(3): 34-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!