山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (5): 93-99.doi: 10.6040/j.issn.1673-3770.0.2021.203

• 综述 • 上一篇    

糖尿病视网膜病变的机制和细胞模型研究进展

王娇娇,李苗综述宋宗明审校   

  1. 河南省人民医院 眼科/河南省立眼科医院/河南省眼科研究所, 河南 郑州 450003
  • 发布日期:2022-09-20
  • 通讯作者: 宋宗明. E-mail:szmeyes@126.com
  • 基金资助:
    国家自然科学基金(82004426);中国博士后科学基金(2020M682305);河南省医学科技攻关计划联合共建项目(LHGJ20190817);河南省立眼科医院基础研究专项(20JCQN007)

Progress in diabetic retinopathy mechanisms and cellular models

WANG Jiaojiao, LI MiaoOverview,SONG ZongmingGuidance   

  1. Department of Ophthalmology, Henan Provincial People's Hospital/Henan Eye Hospital/Henan Eye Institute, Zhengzhou 450003, Henan, China
  • Published:2022-09-20

摘要: 糖尿病视网膜病变是成年人低视力和致盲的主要原因。一个合理的体外模型不仅能模拟疾病的发生发展机制,而且能减少经济投入,因此筛选和构建合适的体外模型是研究的关键。论文围绕糖尿病视网膜病变探讨了炎症反应、细胞凋亡、血管功能障碍和神经血管单元的破坏等相关机制,总结了内皮细胞、周细胞、视网膜色素上皮细胞、神经胶质细胞等建立的几种模型,以期为糖尿病视网膜病变机制研究及相应的药物研发提供有益的参考。

关键词: 糖尿病视网膜病变, 细胞模型, 构建, 机制, 研究进展

Abstract: Diabetic retinopathy is the leading cause of poor vision and blindness in adults. A reasonable model for diabetic retinopathy can not only simulate its pathogenic mechanism, but also reduce economic investment. Therefore, screening and constructing suitable cell models is the core of research. In this paper, the mechanisms of inflammatory response, apoptosis, vascular dysfunction, and neurovascular unit dysfunction in diabetic retinopathy were discussed. Moreover, several models of endothelial cells, pericytes, retinal pigment epithelial cells, and glial cells were summarized to provide a useful reference for further studies on the mechanism of diabetic retinopathy and the development of relevant drugs.

Key words: Diabetic retinopathy, Vitro model, Construct, Mechanism, Progress

中图分类号: 

  • R774
[1] Zhao K, Liu J, Dong G, et al. Preliminary research on the effects and mechanisms of umbilical cord derived mesenchymal stem cells in streptozotocin induced diabetic retinopathy[J]. Int J Mol Med, 2020, 46(2): 849-858. doi:10.3892/ijmm.2020.4623.
[2] Xiao F, Li L, Fu JS, et al. Regulation of the miR-19b-mediated SOCS6-JAK2/STAT3 pathway by lncRNA MEG3 is involved in high glucose-induced apoptosis in hRMECs[J]. Biosci Rep, 2020, 40(7): BSR20194370. doi:10.1042/BSR20194370.
[3] 刘志高, 王淑雅, 韩旭光, 等. 增殖性糖尿病视网膜病变术前玻璃体腔应用阿柏西普的时机及其疗效观察[J]. 山东大学耳鼻喉眼学报, 2021,35(1): 99-103. doi: 10.6040/j.issn.1673-3770.0.2020.250. LIU Zhigao, WANG Shuya, HAN Xuguang, et al. Preoperative timing and the effect of intravitreal aflibercept injection for proliferative diabetic retinopathy patients[J]. J Otolaryngol Ophthalmol Shandong Univ, 2021, 35(1): 99-103. doi: 10.6040/j.issn.1673-3770.0.2020.250.
[4] Fehér J, Taurone S, Spoletini M, et al. Ultrastructure of neurovascular changes in human diabetic retinopathy[J]. Int J Immunopathol Pharmacol, 2018, 31: 394632017748841. doi:10.1177/0394632017748841.
[5] Figueira J, Fletcher E, Massin P, et al. Ranibizumab plus panretinal photocoagulation versus panretinal photocoagulation alone for high-risk proliferative diabetic retinopathy(PROTEUS study)[J]. Ophthalmology, 2018, 125(5): 691-700. doi:10.1016/j.ophtha.2017.12.008.
[6] Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy[J]. Front Immunol, 2020, 11: 564077. doi:10.3389/fimmu.2020.564077.
[7] McKinsey GL, Lizama CO, Keown-Lang AE, et al. A new genetic strategy for targeting microglia in development and disease[J]. Elife, 2020, 9: e54590. doi:10.7554/eLife.54590.
[8] Abe N, Choudhury ME, Watanabe M, et al. Comparison of the detrimental features of microglia and infiltrated macrophages in traumatic brain injury: a study using a hypnotic bromovalerylurea[J]. Glia, 2018, 66(10): 2158-2173. doi:10.1002/glia.23469.
[9] Greter M, Lelios I, Croxford AL. Microglia versus myeloid cell nomenclature during brain inflammation[J]. Front Immunol, 2015, 6: 249. doi:10.3389/fimmu.2015.00249.
[10] Calado SM, Alves LS, Simão S, et al. GLUT1 activity contributes to the impairment of PEDF secretion by the RPE[J]. Mol Vis, 2016, 22: 761-770.
[11] Kim DI, Park MJ, Choi JH, et al. Hyperglycemia-induced GLP-1R downregulation causes RPE cell apoptosis[J]. Int J Biochem Cell Biol, 2015, 59: 41-51. doi:10.1016/j.biocel.2014.11.018.
[12] Su XJ, Sorenson CM, Sheibani N. Isolation and characterization of murine retinal endothelial cells[J]. Mol Vis, 2003, 9: 171-178. doi: 10.1002/mrd.10265.
[13] Bhattacharya S, Khan MM, Ghosh C, et al. The role of Dermcidin isoform-2 in the occurrence and severity of Diabetes[J]. Sci Rep, 2017, 7(1): 8252. doi:10.1038/s41598-017-07958-3.
[14] Song Y, Tian X, Wang XH, et al. Vascular protection of salicin on IL-1β-induced endothelial inflammatory response and damages in retinal endothelial cells[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 1995-2002. doi:10.1080/21691401.2019.1608220.
[15] Gogg S, Smith U, Jansson PA. Increased MAPK activation and impaired insulin signaling in subcutaneous microvascular endothelial cells in type 2 diabetes: the role of endothelin-1[J]. Diabetes, 2009, 58(10): 2238-2245. doi:10.2337/db08-0961.
[16] Roberts AC, Gohil J, Hudson L, et al. Aberrant phenotype in human endothelial cells of diabetic origin: implications for saphenous vein graft failure?[J]. J Diabetes Res, 2015, 2015: 409432. doi:10.1155/2015/409432.
[17] Liu JT, Chen SL, Biswas S, et al. Glucose-induced oxidative stress and accelerated aging in endothelial cells are mediated by the depletion of mitochondrial SIRTs[J]. Physiol Rep, 2020, 8(3): e14331. doi:10.14814/phy2.14331.
[18] Boscaro C, Trenti A, Baggio C, et al. Sex differences in the pro-angiogenic response of human endothelial cells: focus on PFKFB3 and FAK activation[J]. Front Pharmacol, 2020, 11: 587221. doi:10.3389/fphar.2020.587221.
[19] Midena E, Micera A, Frizziero L, et al. Sub-threshold micropulse laser treatment reduces inflammatory biomarkers in aqueous humour of diabetic patients with macular edema[J]. Sci Rep, 2019, 9(1): 10034. doi:10.1038/s41598-019-46515-y.
[20] Yumnamcha T, Guerra M, Singh LP, et al. Metabolic dysregulation and neurovascular dysfunction in diabetic retinopathy[J]. Antioxidants(Basel), 2020, 9(12): E1244. doi:10.3390/antiox9121244.
[21] Tu YY, Song E, Wang ZZ, et al. Melatonin attenuates oxidative stress and inflammation of Müller cells in diabetic retinopathy via activating the Sirt1 pathway[J]. Biomedecine Pharmacother, 2021, 137: 111274. doi:10.1016/j.biopha.2021.111274.
[22] Capozzi ME, Giblin MJ, Penn JS. Palmitic acid induces Müller cell inflammation that is potentiated by Co-treatment with glucose[J]. Sci Rep, 2018, 8(1): 5459. doi:10.1038/s41598-018-23601-1.
[23] Guo YW, Hong WM, Wang XM, et al. MicroRNAs in microglia: how do MicroRNAs affect activation, inflammation, polarization of microglia and mediate the interaction between microglia and glioma?[J]. Front Mol Neurosci, 2019, 12: 125. doi:10.3389/fnmol.2019.00125.
[24] 易秋雪. 外源性EPO通过调节小胶质细胞保护糖尿病视网膜病变血-视网膜内屏障[D]. 上海: 上海交通大学, 2019.
[25] Mesquida M, Drawnel F, Fauser S. The role of inflammation in diabetic eye disease[J]. Semin Immunopathol, 2019, 41(4): 427-445. doi:10.1007/s00281-019-00750-7.
[26] Shao K, Xi L, Cang Z, et al. Knockdown of NEAT1 exerts suppressive effects on diabetic retinopathy progression via inactivating TGF-β1 and VEGF signaling pathways[J]. J Cell Physiol, 2020, 235(12): 9361-9369. doi:10.1002/jcp.29740.
[27] Hammer SS, Beli E, Kady N, et al. The mechanism of diabetic retinopathy pathogenesis unifying key lipid regulators, sirtuin 1 and liver X receptor[J]. EBioMedicine, 2017, 22: 181-190. doi:10.1016/j.ebiom.2017.07.008.
[28] Yumnamcha T, Devi TS, Singh LP. Auranofin mediates mitochondrial dysregulation and inflammatory cell death in human retinal pigment epithelial cells: implications of retinal neurodegenerative diseases[J]. Front Neurosci, 2019, 13: 1065. doi:10.3389/fnins.2019.01065.
[29] Becker S, Carroll LS, Vinberg F. Diabetic photoreceptors: Mechanisms underlying changes in structure and function[J]. Vis Neurosci, 2020, 37: E008. doi:10.1017/s0952523820000097.
[30] Gao M, Liu HY, Xiao YS, et al. xCT regulates redox homeostasis and promotes photoreceptor survival after retinal detachment[J]. Free Radic Biol Med, 2020, 158: 32-43. doi:10.1016/j.freeradbiomed.2020.06.023.
[31] Lai TT, Yang CM, Yang CH. Astaxanthin protects retinal photoreceptor cells against high glucose-induced oxidative stress by induction of antioxidant enzymes via the PI3K/Akt/Nrf2 pathway[J]. Antioxidants(Basel), 2020, 9(8): E729. doi:10.3390/antiox9080729.
[32] Lv J, Bao SY, Liu TH, et al. Sulforaphane delays diabetes-induced retinal photoreceptor cell degeneration[J]. Cell Tissue Res, 2020, 382(3): 477-486. doi:10.1007/s00441-020-03267-w.
[33] Leal EC, Aveleira CA, Castilho AF, et al. High glucose and oxidative/nitrosative stress conditions induce apoptosis in retinal endothelial cells by a caspase-independent pathway[J]. Exp Eye Res, 2009, 88(5): 983-991. doi:10.1016/j.exer.2008.12.010.
[34] Cai X, McGinnis JF. Diabetic retinopathy: animal models, therapies, and perspectives[J]. J Diabetes Res, 2016, 2016: 3789217. doi:10.1155/2016/3789217.
[35] Suarez S, McCollum GW, Jayagopal A, et al. High glucose-induced retinal pericyte apoptosis depends on association of GAPDH and Siah1[J]. J Biol Chem, 2015, 290(47): 28311-28320. doi:10.1074/jbc.m115.682385.
[36] Shi H, Koronyo Y, Fuchs DT, et al. Retinal capillary degeneration and blood-retinal barrier disruption in murine models of Alzheimer's disease[J]. Acta Neuropathol Commun, 2020, 8(1): 202. doi:10.1186/s40478-020-01076-4.
[37] Fu DX, Yu JY, Connell AR, et al. Beneficial effects of berberine on oxidized LDL-induced cytotoxicity to human retinal Müller cells[J]. Invest Ophthalmol Vis Sci, 2016, 57(7): 3369-3379. doi:10.1167/iovs.16-19291.
[38] 李蓉, 姚杨, 杜军辉, 等. 自噬在高糖条件下视网膜色素上皮细胞表达血管内皮生长因子促进RF/6A细胞血管生成中的作用[J]. 眼科新进展, 2019,39(8): 714-718. doi:10.13389/j.cnki.rao.2019.0163. LI Rong, YAO Yang, DU Junhui, et al. Autophagy promotes angiogenesis of RF/6A cells following upregulating the expression of vascular endothelial growth factor in retinal pigment epithelial cells under high glucose conditions[J]. Recent Adv Ophthalmol, 2019, 39(8): 714-718. doi:10.13389/j.cnki.rao.2019.0163.
[39] Hu J, Li T, Du X, et al. G protein-coupled receptor 91 signaling in diabetic retinopathy and hypoxic retinal diseases[J]. Vision Res, 2017, 139: 59-64. doi:10.1016/j.visres.2017.05.001.
[40] Chen M, Liu B, Ma J, et al. Protective effect of mitochondria-targeted peptide MTP-131 against oxidative stress-induced apoptosis in RGC-5 cells[J]. Mol Med Rep, 2017, 15(4): 2179-2185. doi:10.3892/mmr.2017.6271.
[41] López-Contreras AK, Martínez-Ruiz MG, Olvera-Montaño C, et al. Importance of the use of oxidative stress biomarkers and inflammatory profile in aqueous and vitreous humor in diabetic retinopathy[J]. Antioxidants, 2020, 9(9): 891. doi:10.3390/antiox9090891.
[42] Shosha E, Xu ZM, Narayanan S, et al. Mechanisms of diabetes-induced endothelial cell senescence: role of arginase 1[J]. Int J Mol Sci, 2018, 19(4): 1215. doi:10.3390/ijms19041215.
[43] Kady N, Yan Y, Salazar T, et al. Increase in acid sphingomyelinase level in human retinal endothelial cells and CD34+ circulating angiogenic cells isolated from diabetic individuals is associated with dysfunctional retinal vasculature and vascular repair process in diabetes[J]. J Clin Lipidol, 2017, 11(3): 694-703. doi:10.1016/j.jacl.2017.03.007.
[44] 李红梅, 雷霍, 杨晓春, 等. 天麻素对高糖培养的小胶质细胞和视网膜神经节细胞相互作用的影响[J]. 昆明理工大学学报(自然科学版), 2015, 40(6): 96-102. doi:10.16112/j.cnki.53-1223/n.2015.06.016. LI Hongmei, LEI Huo, YANG Xiaochun, et al. Effect of gastrodin on interactions between microglia and retinal ganglion cells cultured by high glucose[J]. J Kunming Univ Sci Technol Nat Sci Ed, 2015, 40(6): 96-102. doi:10.16112/j.cnki.53-1223/n.2015.06.016.
[45] Durham JT, Dulmovits BM, Cronk SM, et al. Pericyte chemomechanics and the angiogenic switch: insights into the pathogenesis of proliferative diabetic retinopathy?[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3441-3459. doi:10.1167/iovs.14-13945.
[46] 廖宇洁, 于晓彦, 金轶平, 等. 体外共培养模式下小胶质细胞影响内皮细胞紧密连接[J]. 海南医学, 2019, 30(5): 548-551. doi: 10.3969/j.issn.1003-6350.2019.05.002. LIAO Yujie, YU Xiaoyan, JIN Yiping, et al. Effect of microglia on the expression of tight junction in human umbilical vein endothelial cells by co-culture in vitro[J]. Hainan Med J, 2019, 30(5): 548-551. doi: 10.3969/j.issn.1003-6350.2019.05.002.
[47] 张晓梅, 王彬杰, 王巍, 等. Transwell小室共培养条件下缺氧时视网膜色素上皮细胞对内皮细胞增殖的影响[J]. 哈尔滨医科大学学报, 2011, 45(4): 312-315. doi: 10.3969/j.issn.1000-1905.2011.04.005. ZHANG Xiaomei, WANG Binjie, WANG Wei, et al. Effects of retinal pigment epithelium cells on proliferation of endothelial cells under hypoxia in a co-culture system[J]. J Harbin Med Univ, 2011, 45(4): 312-315. doi: 10.3969/j.issn.1000-1905.2011.04.005.
[48] 袁晨, 张梅, 谢学军. 血-视网膜内屏障体外模型构建研究进展[J]. 国际眼科杂志, 2021,21(6): 991-995. doi: 10.3980/j.issn.1672-5123.2021.6.10. YUAN Chen, ZHANG Mei, XIE Xuejun. Progress in the construction of inner blood retinal barrier model in vitro[J]. Int Eye Sci, 2021, 21(6): 991-995. doi: 10.3980/j.issn.1672-5123.2021.6.10.
[49] 李红, 樊映川. 视网膜神经血管相互作用机制及其在糖尿病视网膜病变中的病理改变的研究进展[J]. 实用医院临床杂志, 2015, 12(3): 148-150. doi: 10.3969/j.issn.1672-6170.2015.03.057. LI Hong, FAN Yingchuan. Neurovascular interactions in the retina: mechanism and the advances of pathological changes of diabetic retinopathy[J]. Pract J Clin Med, 2015, 12(3): 148-150. doi: 10.3969/j.issn.1672-6170.2015.03.057.
[50] Garhöfer G, Chua J, Tan BY, et al. Retinal neurovascular coupling in diabetes[J]. J Clin Med, 2020, 9(9): E2829. doi:10.3390/jcm9092829.
[51] Shahulhameed S, Swain S, Jana S, et al. A robust model system for retinal hypoxia: live imaging of calcium dynamics and gene expression studies in primary human mixed retinal culture[J]. Front Neurosci, 2019, 13: 1445. doi:10.3389/fnins.2019.01445.
[1] 赵颖,张珊综述许家骏,赵静如审校. 热休克蛋白72在青光眼视网膜神经节细胞中的保护机制研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 83-87.
[2] 林海,朱莹综述张维天审校. 慢性鼻窦炎发病中离子通道作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 64-70.
[3] 李佳倪,朱冬冬综述孟粹达审校. 表观遗传学在慢性鼻窦炎伴鼻息肉发病机制中的作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 84-91.
[4] 王露,谢慧,卢美迪,邓新星,李清韵. 基于网络药理学和分子对接探讨“川芎-白芷”药对治疗鼻窦炎的作用机制[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 154-164.
[5] 王惠, 王俊,孙乙,于腾飞,朱玉广, 朱艳. 玻璃体腔注射HGF-MSCs对糖尿病大鼠视网膜HGF表达的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 72-77.
[6] 韩莹莹综述李延忠审校. 阻塞性睡眠呼吸暂停低通气综合征与亚临床动脉粥样硬化[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 126-132.
[7] 狄宇综述李莹审校. 干眼炎症反应机制及抗炎治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 144-150.
[8] 王宇婷综述王嘉玺审校. microRNA在过敏性鼻炎发病机制中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 98-104.
[9] 徐菲菲综述吴昊审校. 三叉神经痛的病理机制及治疗进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 115-122.
[10] 刘志高,王淑雅,韩旭光,王玉,李志伟,马爱华,赵博军. 增殖性糖尿病视网膜病变术前玻璃体腔应用阿柏西普的时机及其疗效观察[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 99-103.
[11] 向浏岚,叶远航综述蒋璐云,刘洋审校. Tim-3在变应性鼻炎中的作用及机制研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 118-122.
[12] 朱正茹综述张小兵审校. 高迁移率族蛋白B1与变应性鼻炎的相关性[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 123-128.
[13] 黄嘉莉综述杨淑荣审校. 变应性鼻炎中信号传导通路的研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 125-129.
[14] 周芳茗,谢艳,刘洋综述蒋路云审校. 鼻源性头痛的研究动态分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 130-133.
[15] 青晓艳, 徐义全综述李超审校. 甲状腺未分化癌的分子机制研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 26-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!