山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (3): 116-122.doi: 10.6040/j.issn.1673-3770.0.2021.496
林一杭,李幼瑾
LIN YihangOverview,LI Youjin
摘要: 随着对肠道微生态结构与功能研究的不断深入,肠道菌群与变应性疾病的发生、发展与病情转归的联系被证实。在儿童的生长发育过程中,肠道内各种菌群不断发生动态演变,不同年龄阶段肠道微生态的不同特征及其与变应性鼻炎(AR)之间都有其相对应的互动关系。AR作为最为常见的儿童慢性呼吸道疾病之一,针对其治疗的临床药物种类有限,而免疫治疗方式疗程长被接受度低。除以上两种主要治疗模式外,目前已有学者开展了以探究调整肠道微生态对AR儿童进行干预的有效收益评估的临床研究。综述对儿童群体中与AR相关的肠道微生物群临床研究与干预进展进行整理总结,以期评估肠道微生物群在AR发生、治疗方面的相关理论与机制的应用价值。
中图分类号:
[1] Mastrorilli C, Posa D, Cipriani F, et al. Asthma and allergic rhinitis in childhood: what's new[J]. Pediatr Allergy Immunol, 2016, 27(8): 795-803. doi:10.1111/pai.12681. [2] 向莉, 申昆玲. 儿童常见过敏性疾病诊疗概述[J]. 中国医学前沿杂志(电子版), 2013, 5(8): 1-5. doi:10.3969/j.issn.1674-7372.2013.08.001. [3] Zhang Y, Zhang L. Increasing prevalence of allergic rhinitis in China[J]. Allergy Asthma Immunol Res, 2019, 11(2): 156-169. doi:10.4168/aair.2019.11.2.156. [4] Hassan A, Blanchard N. Microbial(co)infections: powerful immune influencers[J]. PLoS Pathog, 2022, 18(2): e1010212. doi:10.1371/journal.ppat.1010212. [5] Shen X, Wang ML, Zhang X, et al. Dynamic construction of gut microbiota may influence allergic diseases of infants in Southwest China[J]. BMC Microbiol, 2019, 19(1): 123. doi:10.1186/s12866-019-1489-4. [6] Johnson CC, Ownby DR. The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases[J]. Transl Res, 2017, 179: 60-70. doi:10.1016/j.trsl.2016.06.010. [7] Shi N, Li N, Duan XW, et al. Interaction between the gut microbiome and mucosal immune system[J]. Mil Med Res, 2017, 4: 14. doi:10.1186/s40779-017-0122-9. [8] Milani C, Duranti S, Bottacini F, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota[J]. Microbiol Mol Biol Rev, 2017, 81(4): e00036-e00017. doi:10.1128/MMBR.00036-17. [9] Akagawa S, Kaneko K. Gut microbiota and allergic diseases in children[J]. Allergol Int, 2022, 18: S1323-S8930(22)00012-0. doi:10.1016/j.alit.2022.02.004. [10] Melli LC, do Carmo-Rodrigues MS, Araújo-Filho HB, et al. Intestinal microbiota and allergic diseases: a systematic review[J]. Allergol Immunopathol(Madr), 2016, 44(2): 177-188. doi:10.1016/j.aller.2015.01.013. [11] 梁峥琰, 邓玉琴, 陶泽璋. 母亲过敏和环境暴露对免疫成熟的影响[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 96-104. doi:10.6040/j.issn.1673-3770.0.2017.363. LIANG Zhengyan, DENG Yuqin, TAO Zezhang. Effect of maternal allergy and environmental exposure on immune maturation[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(3): 96-104.doi:10.6040/j.issn.1673-3770.0.2017.363. [12] Venter C, Agostoni C, Arshad SH, et al. Dietary factors during pregnancy and atopic outcomes in childhood: a systematic review from the european academy of allergy and clinical immunology[J]. Pediatr Allergy Immunol, 2020, 31(8): 889-912. doi:10.1111/pai.13303. [13] Bertelsen RJ, Brantsæter AL, Magnus MC, et al. Probiotic milk consumption in pregnancy and infancy and subsequent childhood allergic diseases[J]. J Allergy Clin Immunol, 2014, 133(1): 165-171.e1-8. doi:10.1016/j.jaci.2013.07.032. [14] Kristensen K, Henriksen L. Cesarean section and disease associated with immune function[J]. J Allergy Clin Immunol, 2016, 137(2): 587-590. doi:10.1016/j.jaci.2015.07.040. [15] Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns[J]. Proc Natl Acad Sci USA, 2010, 107(26): 11971-11975. doi:10.1073/pnas.1002601107. [16] Kuo CH, Kuo HF, Huang CH, et al. Early life exposure to antibiotics and the risk of childhood allergic diseases: an update from the perspective of the hygiene hypothesis[J]. Wei Mian Yu Gan Ran Za Zhi, 2013, 46(5): 320-329. doi:10.1016/j.jmii.2013.04.005. [17] Mitre E, Susi A, Kropp LE, et al. Association between use of acid-suppressive medications and antibiotics during infancy and allergic diseases in early childhood[J]. JAMA Pediatr, 2018, 172(6): e180315. doi:10.1001/jamapediatrics.2018.0315. [18] González-Díaz SN, Del Río-Navarro BE, Pietropaolo-Cienfuegos DR, et al. Factors associated with allergic rhinitis in children and adolescents from northern Mexico: International Study of Asthma and Allergies in Childhood Phase IIIB [J]. Allergy Asthma Proc, 2010, 31(4): e53-e62. doi:10.2500/aap.2010.31.3346. [19] Chiu CY, Chan YL, Tsai MH, et al. Gut microbial dysbiosis is associated with allergen-specific IgE responses in young children with airway allergies[J]. World Allergy Organ J, 2019, 12(3): 100021. doi:10.1016/j.waojou.2019.100021. [20] Michaudel C, Sokol H. The gut microbiota at the service of immunometabolism[J]. Cell Metab, 2020, 32(4): 514-523. doi:10.1016/j.cmet.2020.09.004. [21] Kemter AM, Nagler CR. Influences on allergic mechanisms through gut, lung, and skin microbiome exposures[J]. J Clin Invest, 2019, 129(4): 1483-1492. doi:10.1172/JCI124610. [22] Simonyté Sjödin K, Hammarström ML, Rydén P, et al. Temporal and long-term gut microbiota variation in allergic disease: a prospective study from infancy to school age[J]. Allergy, 2019, 74(1): 176-185. doi:10.1111/all.13485. [23] Arrieta MC, Arévalo A, Stiemsma L, et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting[J]. J Allergy Clin Immunol, 2018, 142(2): 424-434.e10. doi:10.1016/j.jaci.2017.08.041. [24] Stokholm J, Blaser MJ, Thorsen J, et al. Maturation of the gut microbiome and risk of asthma in childhood[J]. Nat Commun, 2018, 9(1): 141. doi:10.1038/s41467-017-02573-2. [25] Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis[J]. Immunity, 2014, 40(1): 128-139. doi:10.1016/j.immuni.2013.12.007. [26] Arpaia N, Campbell C, Fan XY, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504(7480): 451-455. doi:10.1038/nature12726. [27] Byndloss MX, Olsan EE, Rivera-Chávez F, et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion[J]. Science, 2017, 357(6351): 570-575. doi:10.1126/science.aam9949. [28] McKenzie C, Tan J, Macia L, et al. The nutrition-gut microbiome-physiology axis and allergic diseases[J]. Immunol Rev, 2017, 278(1): 277-295. doi:10.1111/imr.12556. [29] Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, et al. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes[J]. Front Genet, 2015, 6: 148. doi:10.3389/fgene.2015.00148. [30] Chiu CY, Cheng ML, Chiang MH, et al. Gut microbial-derived butyrate is inversely associated with IgE responses to allergens in childhood asthma[J]. Pediatr Allergy Immunol, 2019, 30(7): 689-697. doi:10.1111/pai.13096. [31] Zimmermann P, Messina N, Mohn WW, et al. Association between the intestinal microbiota and allergic sensitization, eczema, and asthma: a systematic review[J]. J Allergy Clin Immunol, 2019, 143(2): 467-485. doi:10.1016/j.jaci.2018.09.025. [32] Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi and the host immune system[J]. Nat Rev Immunol, 2014, 14(6): 405-416. doi:10.1038/nri3684. [33] Schei K, Simpson MR, Øien T, et al. Allergy-related diseases and early gut fungal and bacterial microbiota abundances in children[J]. Clin Transl Allergy, 2021, 11(5): e12041. doi:10.1002/clt2.12041. [34] 林一杭, 芮晓清, 李幼瑾. 肠道菌群在血清tIgE水平升高的变应性鼻炎儿童发病中的作用[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(12): 1123-1128. doi:10.13201/j.issn.2096-7993.2020.12.016. LIN Yihang, RUI Xiaoqing, LI Youjin. Role of gut microbiota in children with allergic rhinitis with high serum total IgE level[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2020, 34(12): 1123-1128. doi:10.13201/j.issn.2096-7993.2020.12.016. [35] Chua HH, Chou HC, Tung YL, et al. Intestinal dysbiosis featuring abundance of Ruminococcus gnavus associates with allergic diseases in infants[J]. Gastroenterology, 2018, 154(1): 154-167. doi:10.1053/j.gastro.2017.09.006. [36] Su YJ, Luo SD, Hsu CY, et al. Differences in gut microbiota between allergic rhinitis, atopic dermatitis, and skin urticaria: a pilot study[J]. Medicine(Baltimore), 2021, 100(9): e25091. doi:10.1097/MD.0000000000025091. [37] Kukkonen K, Savilahti E, Haahtela T, et al. Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial[J]. J Allergy Clin Immunol, 2007, 119(1): 192-198. doi:10.1016/j.jaci.2006.09.009. [38] Zajac AE, Adams AS, Turner JH. A systematic review and meta-analysis of probiotics for the treatment of allergic rhinitis[J]. Int Forum Allergy Rhinol, 2015, 5(6): 524-532. doi:10.1002/alr.21492. [39] Huang JL, Zhang J, Wang XZ, et al. Effect of probiotics on respiratory tract allergic disease and gut microbiota[J]. Front Nutr, 2022, 9: 821900. doi:10.3389/fnut.2022.821900. [40] Blackwood BP, Yuan CY, Wood DR, et al. Probiotic Lactobacillus species strengthen intestinal barrier function and tight junction integrity in experimental necrotizing enterocolitis[J]. J Probiotics Health, 2017, 5(1): 159. doi:10.4172/2329-8901.1000159. [41] Secher T, Maillet I, Mackowiak C, et al. The probiotic strain Escherichia coli Nissle 1917 prevents papain-induced respiratory barrier injury and severe allergic inflammation in mice[J]. Sci Rep, 2018, 8(1): 11245. doi:10.1038/s41598-018-29689-9. [42] Chen Y, Zhang M, Ren FZ. A role of exopolysaccharide produced by Streptococcus thermophilus in the intestinal inflammation and mucosal barrier in caco-2 monolayer and dextran sulphate sodium-induced experimental murine colitis[J]. Molecules, 2019, 24(3): 513. doi:10.3390/molecules24030513. [43] Dennis-Wall JC, Culpepper T, Nieves C Jr, et al. Probiotics(Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM-2)improve rhinoconjunctivitis-specific quality of life in individuals with seasonal allergies: a double-blind, placebo-controlled, randomized trial[J]. Am J Clin Nutr, 2017, 105(3): 758-767. doi:10.3945/ajcn.116.140012. [44] Lee DH, Park HK, Lee HR, et al. Immunoregulatory effects of Lactococcus lactis-derived extracellular vesicles in allergic asthma[J]. Clin Transl Allergy, 2022, 12(3): e12138. doi:10.1002/clt2.12138. [45] 孙中美, 李军祥, 胡立明, 等. 葛洪《肘后备急方》应用粪便治疗疾病探析[J]. 中医学报, 2019, 34(5): 916-919. doi:10.16368/j.issn.1674-8999.2019.05.218. SUN Zhongmei, LI Junxiang, HU Liming, et al. Analysis on the use of excrement to treat diseases in Ge hong's Zhouhou beiji Fang[J]. Acta Chinese Medicine, 2019, 34(5): 916-919. doi:10.16368/j.issn.1674-8999.2019.05.218. [46] 张远真, 曾煜闺, 聂晓晶. 粪菌移植在儿科应用的研究进展[J]. 中华实用儿科临床杂志, 2022, 37(4): 311-314. doi:10.3760/cma.j.cn101070-20200824-01401. ZHANG Yuanzhen, ZENG Yugui, NIE Xiaojing. Research progress of the application of fecal microbiota transplantation in pediatric diseases[J]. Chinese Journal of Applied Clinical Pediatrics, 2022, 37(4): 311-314. doi:10.3760/cma.j.cn101070-20200824-01401. [47] Zhang FM, Cui BT, He XX, et al. Microbiota transplantation: concept, methodology and strategy for its modernization[J]. Protein Cell, 2018, 9(5): 462-473. doi:10.1007/s13238-018-0541-8. [48] Antushevich H. Fecal microbiota transplantation in disease therapy[J]. Clin Chim Acta, 2020, 503: 90-98. doi:10.1016/j.cca.2019.12.010. [49] Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis[J]. J Crohns Colitis, 2014, 8(12): 1569-1581. doi:10.1016/j.crohns.2014.08.006. [50] Khoruts A, Sadowsky MJ. Understanding the mechanisms of faecal microbiota transplantation[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(9): 508-516. doi:10.1038/nrgastro.2016.98. [51] Xu MQ, Cao HL, Wang WQ, et al. Fecal microbiota transplantation broadening its application beyond intestinal disorders[J]. World J Gastroenterol, 2015, 21(1): 102-111. doi:10.3748/wjg.v21.i1.102. [52] Wang YH, Wiesnoski DH, Helmink BA, et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis[J]. Nat Med, 2018, 24(12): 1804-1808. doi:10.1038/s41591-018-0238-9. [53] Burrello C, Giuffrè MR, Macandog AD, et al. Fecal microbiota transplantation controls murine chronic intestinal inflammation by modulating immune cell functions and gut microbiota composition[J]. Cells, 2019, 8(6): E517. doi:10.3390/cells8060517. [54] Feehley T, Plunkett CH, Bao RY, et al. Healthy infants harbor intestinal bacteria that protect against food allergy[J]. Nat Med, 2019, 25(3): 448-453. doi:10.1038/s41591-018-0324-z. [55] Rachid R, Stephen-Victor E, Chatila TA. The microbial origins of food allergy[J]. J Allergy Clin Immunol, 2021, 147(3): 808-813. doi:10.1016/j.jaci.2020.12.624. [56] Albuhairi S, Rachid R. Novel therapies for treatment of food allergy[J]. Immunol Allergy Clin North Am, 2020, 40(1): 175-186. doi:10.1016/j.iac.2019.09.007. [57] 朱忠生, 郑跃杰, 蔡华波, 等. 粪菌移植治疗幼儿严重食物过敏性胃肠病1例并文献复习[J]. 临床儿科杂志, 2017, 35(4): 247-252. doi:10.3969/j.issn.1000-3606.2017.04.002. ZHU Zhongsheng, ZHENG Yuejie, CAI Huabo, et al. Fecal bacteria transplantation for treatment of severe gastrointestinal disease caused by food allergy in children: a case report and literature review[J]. Journal of Clinical Pediatrics, 2017, 35(4): 247-252. doi:10.3969/j.issn.1000-3606.2017.04.002. [58] Berin MC. Dysbiosis in food allergy and implications for microbial therapeutics [J]. J Clin Invest, 2021, 131(2): e144994. doi:10.1172/JCI144994. |
[1] | 张丰珍, 王桂香, 魏沄沄, 张亚梅, 赵靖, 王华, 李宏彬, 李晓丹, 张杰. 合并轻度出血性疾病的扁桃体和(或)腺样体切除术患儿围手术期管理[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 66-72. |
[2] | 倪璟滋,万文锦,程雷. 变应性鼻炎健康相关生活质量研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 110-115. |
[3] | 刘真,宋西成. 细胞焦亡在变应性鼻炎中的作用机制及研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 123-129. |
[4] | 王娜,柴向斌. 前列腺源性ETS因子在哮喘及鼻黏膜炎性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 136-141. |
[5] | 刘一潼,周穗子,邱前辉. NLRP3炎症小体在慢性鼻窦炎和变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 142-146. |
[6] | 李琳,高正文,崔楠,孙健平,黄贤明,崔静. 儿童慢性鼻窦炎基因表达谱的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 171-180. |
[7] | 龚霄阳,程雷. 新冠疫情期间基于门诊患者的变应性鼻炎患者比例构成分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 245-255. |
[8] | 鹿伟理,姜涛,李宪华. 多重致敏儿童变应性鼻炎患者sIgE特征分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 260-265. |
[9] | 黄开月,李雪情,韩国鑫,张勤修. 基于“肺脾”理论指导穴位埋线治疗变应性鼻炎的Meta分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 266-274. |
[10] | 朱正茹, 张小兵. 中药汤剂结合常规西药治疗变应性鼻炎疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 281-289. |
[11] | 杨扬, 王晓旭, 张杰. 儿童中耳胆脂瘤诊治进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 1-6. |
[12] | 高信忠, 林宗通, 沈翎, 刘平凡, 林兴, 许杨杨. 咽鼓管球囊扩张联合腺样体切除术治疗儿童分泌性中耳炎疗效分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 7-12. |
[13] | 马宁, 陈敏, 刘薇, 杨扬, 邵剑波, 郝津生, 刘冰, 张晓, 段晓岷, 张祺丰, 张杰. 儿童颞骨骨折临床特点和治疗策略[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 13-19. |
[14] | 胡春燕, 党攀红, 张睿, 樊孟耘. 儿童单侧感音性听力损失的听力学及影像学特征149例分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 31-36. |
[15] | 党攀红, 张睿, 胡春燕, 王洁, 樊孟耘. 儿童乳突-颞下迷路外面神经减压术8例临床分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 37-42. |
|