山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (3): 123-129.doi: 10.6040/j.issn.1673-3770.0.2021.463
刘真1,2,宋西成1,2
LIU Zhen1,2Overview,SONG Xicheng1,2
摘要: 变应性鼻炎(AR)是由环境和遗传因素共同作用导致的鼻黏膜变应性炎症疾病,目前AR的发病率呈现每年不断升高的趋势,给人们的身心健康、生活等造成严重的影响,其主要的治疗手段包括避免接触过敏原、药物治疗和免疫治疗等,但是部分患者治疗效果并不理想,究其原因主要与其发病机制复杂多样有关。细胞焦亡是程序性细胞死亡的一种,近年来研究表明细胞焦亡通过多种途径参与了AR的发生发展,部分药物可以通过抑制细胞焦亡来治疗AR。因此,深入探索细胞焦亡对AR的调控机制可能为AR的治疗提供新思路。论文就细胞焦亡在AR中的作用机制及研究进展进行综述。
中图分类号:
[1] Steelant B, Seys SF, van Gerven L, et al. Histamine and T helper cytokine-driven epithelial barrier dysfunction in allergic rhinitis[J]. J Allergy Clin Immunol, 2018, 141(3): 951-963.e8. doi:10.1016/j.jaci.2017.08.039. [2] Bernstein DI, Schwartz G, Bernstein JA. Allergic rhinitis: mechanisms and treatment[J]. Immunol Allergy Clin North Am, 2016, 36(2): 261-278. doi:10.1016/j.iac.2015.12.004. [3] Yang L, Fu JR, Zhou YF. Research progress in atopic March[J]. Front Immunol, 2020, 11: 1907. doi:10.3389/fimmu.2020.01907. [4] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(2): 81-100. doi:10.3760/cma.j.issn.1673-0860.2019.02.001. [5] Zissler UM, Esser-von Bieren J, Jakwerth CA, et al. Current and future biomarkers in allergic asthma[J]. Allergy, 2016, 71(4): 475-494. doi:10.1111/all.12828. [6] Meng YF, Wang CS, Zhang L. Recent developments and highlights in allergic rhinitis[J]. Allergy, 2019, 74(12): 2320-2328. doi:10.1111/all.14067. [7] Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3): 486-541. doi:10.1038/s41418-017-0012-4. [8] 黄清宇, 杜楚江, 张雨竹, 等. 细胞焦亡研究进展[J]. 中国免疫学杂志, 2020, 36(2): 245-250. doi:10.3969/j.issn.1000-484X.2020.02.022. HUANG Qingyu, DU Chujiang, ZHANG Yuzhu, et al. Research progress of pyroptosis[J]. Cellular & Molecular Immunology, 2020, 36(2): 245-250. doi:10.3969/j.issn.1000-484X.2020.02.022. [9] Liston A, Masters SL. Homeostasis-altering molecular processes as mechanisms of inflammasome activation[J]. Nat Rev Immunol, 2017, 17(3): 208-214. doi:10.1038/nri.2016.151. [10] Rathinam VAK, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions[J]. Cell, 2016, 165(4): 792-800. doi:10.1016/j.cell.2016.03.046. [11] Man SM, Kanneganti TD. Regulation of inflammasome activation[J]. Immunol Rev, 2015, 265(1): 6-21. doi:10.1111/imr.12296. [12] 魏亚宁, 仇惠莺. NLRP3炎症小体活化促进上皮细胞焦亡诱导变应性鼻炎[J]. 免疫学杂志, 2021, 37(2): 140-144. doi:10.13431/j.cnki.immunol.j.20210021. WEI Yaning, QIU Huiying. NLRP3 inflammasome activation promotes the development of allergic rhinitis via epithelium pyroptosis[J]. Immunological Journal, 2021, 37(2): 140-144. doi:10.13431/j.cnki.immunol.j.20210021. [13] Liu X, Zhang ZB, Ruan JB, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610): 153-158. doi:10.1038/nature18629. [14] Shi JJ, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575): 660-665. doi:10.1038/nature15514. [15] Bergougnan C, Dittlein DC, Hümmer E, et al. Physical and immunological barrier of human primary nasal epithelial cells from non-allergic and allergic donors[J]. World Allergy Organ J, 2020, 13(3): 100109. doi:10.1016/j.waojou.2020.100109. [16] Han MW, Kim SH, Oh I, et al. Serum IL-1β can be a biomarker in children with severe persistent allergic rhinitis[J]. Allergy Asthma Clin Immunol, 2019, 15: 58. doi:10.1186/s13223-019-0368-8. [17] Sanders NL, Mishra A. Role of interleukin-18 in the pathophysiology of allergic diseases[J]. Cytokine Growth Factor Rev, 2016, 32: 31-39. doi:10.1016/j.cytogfr.2016.07.001. [18] Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases[J]. Immunol Rev, 2017, 277(1): 61-75. doi:10.1111/imr.12534. [19] Robinson N, Ganesan R, Heged s C, et al. Programmed necrotic cell death of macrophages: focus on pyroptosis, necroptosis, and parthanatos[J]. Redox Biol, 2019, 26: 101239. doi:10.1016/j.redox.2019.101239. [20] Tibbitt CA, Stark JM, Martens L, et al. Single-cell RNA sequencing of the T helper cell response to house dust mites defines a distinct gene expression signature in airway Th2 cells[J]. Immunity, 2019, 51(1): 169-184.e5. doi:10.1016/j.immuni.2019.05.014. [21] 杨斯迪, 邓奇峰, 黄瑞, 等. 炎性小体激活与细胞焦亡的研究进展[J]. 微生物与感染, 2017, 12(3): 192-196. doi:10.3969/j.issn.1673-6184.2017.03.010. YANG Sidi, DENG Qifeng, HUANG Rui, et al. Research progress on inflammasome activation and pyroptosis[J]. Journal of Microbes and Infections, 2017, 12(3): 192-196. doi:10.3969/j.issn.1673-6184.2017.03.010. [22] Liu QY, Zhang DY, Hu DY, et al. The role of mitochondria in NLRP3 inflammasome activation[J]. Mol Immunol, 2018, 103: 115-124. doi:10.1016/j.molimm.2018.09.010. [23] Yang ZX, Liang CQ, Wang TY, et al. NLRP3 inflammasome activation promotes the development of allergic rhinitis via epithelium pyroptosis[J]. Biochem Biophys Res Commun, 2020, 522(1): 61-67. doi:10.1016/j.bbrc.2019.11.031. [24] Yu XF, Wang M, Zhao H, et al. Targeting a novel hsa_circ_0000520/miR-556-5p/NLRP3 pathway-mediated cell pyroptosis and inflammation attenuates ovalbumin(OVA)-induced allergic rhinitis(AR)in mice models[J]. Inflamm Res, 2021, 70(6): 719-729. doi:10.1007/s00011-021-01472-z. [25] Zhuang J, Cui HY, Zhuang LL, et al. Bronchial epithelial pyroptosis promotes airway inflammation in a murine model of toluene diisocyanate-induced asthma[J]. Biomedecine Pharmacother, 2020, 125: 109925. doi:10.1016/j.biopha.2020.109925. [26] Tenthorey JL, Chavez RA, Thompson TW, et al. NLRC4 inflammasome activation is NLRP3- and phosphorylation-independent during infection and does not protect from melanoma[J]. J Exp Med, 2020, 217(7): e20191736. doi:10.1084/jem.20191736. [27] Li WB, Deng MH, Loughran PA, et al. LPS induces active HMGB1 release from hepatocytes into exosomes through the coordinated activities of TLR4 and caspase-11/GSDMD signaling[J]. Front Immunol, 2020, 11: 229. doi:10.3389/fimmu.2020.00229. [28] Zas ona Z, Flis E, Wilk MM, et al. Caspase-11 promotes allergic airway inflammation[J]. Nat Commun, 2020, 11(1): 1055. doi:10.1038/s41467-020-14945-2. [29] Tsukamoto H, Takeuchi S, Kubota K, et al. Lipopolysaccharide(LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKK -IRF3 axis activation[J]. J Biol Chem, 2018, 293(26): 10186-10201. doi:10.1074/jbc.M117.796631. [30] Hu M, Li XP, Zhang JL, et al. GEN-27 exhibits anti-inflammatory effects by suppressing the activation of NLRP3 inflammasome and NF-κB pathway[J]. Cell Biol Int, 2019, 43(10): 1184-1192. doi:10.1002/cbin.11101. [31] Moreira-Souza ACA, Almeida-da-Silva CLC, Rangel TP, et al. The P2X7 receptor mediates Toxoplasma gondii control in macrophages through canonical NLRP3 inflammasome activation and reactive oxygen species production[J]. Front Immunol, 2017, 8: 1257. doi:10.3389/fimmu.2017.01257. [32] Harcha PA, López X, Sáez PJ, et al. Pannexin-1 channels are essential for mast cell degranulation triggered during type I hypersensitivity reactions[J]. Front Immunol, 2019, 10: 2703. doi:10.3389/fimmu.2019.02703. [33] Wang YP, Gao WQ, Shi XY, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103. doi:10.1038/nature22393. [34] Yu JH, Li S, Qi J, et al. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells[J]. Cell Death Dis, 2019, 10(3): 193. doi:10.1038/s41419-019-1441-4. [35] Malireddi RKS, Gurung P, Mavuluri J, et al. TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation[J]. J Exp Med, 2018, 215(4): 1023-1034. doi:10.1084/jem.20171922. [36] Orning P, Weng D, Starheim K, et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death[J]. Science, 2018, 362(6418): 1064-1069. doi:10.1126/science.aau2818. [37] Fritsch M, Günther SD, Schwarzer R, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis[J]. Nature, 2019, 575(7784): 683-687. doi:10.1038/s41586-019-1770-6. [38] Mascarenhas DPA, Cerqueira DM, Pereira MSF, et al. Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome[J]. PLoS Pathog, 2017, 13(8): e1006502. doi:10.1371/journal.ppat.1006502. [39] Schneider KS, Gro CJ, Dreier RF, et al. The inflammasome drives GSDMD-independent secondary pyroptosis and IL-1 release in the absence of caspase-1 protease activity[J]. Cell Rep, 2017, 21(13): 3846-3859. doi:10.1016/j.celrep.2017.12.018. [40] Qi X, Gurung P, Malireddi RK, et al. Critical role of caspase-8-mediated IL-1 signaling in promoting Th2 responses during asthma pathogenesis[J]. Mucosal Immunol, 2017, 10(1): 128-138. doi:10.1038/mi.2016.25. [41] Zhang WT, Ba GY, Tang R, et al. Ameliorative effect of selective NLRP3 inflammasome inhibitor MCC950 in an ovalbumin-induced allergic rhinitis murine model[J]. Int Immunopharmacol, 2020, 83: 106394. doi:10.1016/j.intimp.2020.106394. [42] Xiao LF, Jiang L, Hu Q, et al. microRNA-133b ameliorates allergic inflammation and symptom in murine model of allergic rhinitis by targeting Nlrp3[J]. Cell Physiol Biochem, 2017, 42(3): 901-912. doi:10.1159/000478645. [43] Huang Y, Jiang H, Chen Y, et al. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases[J]. EMBO Mol Med, 2018, 10(4): e8689. doi:10.15252/emmm.201708689. [44] Kato A. Group 2 innate lymphoid cells in airway diseases[J]. Chest, 2019, 156(1): 141-149. doi:10.1016/j.chest.2019.04.101. [45] Hu WX, Zhou WY, Zhu XL, et al. Anti-interleukin-1 beta/tumor necrosis factor-alpha IgY antibodies reduce pathological allergic responses in Guinea pigs with allergic rhinitis[J]. Mediators Inflamm, 2016, 2016: 3128182. doi:10.1155/2016/3128182. [46] Li DD, Ren WY, Jiang ZL, et al. Regulation of the NLRP3 inflammasome and macrophage pyroptosis by the p38 MAPK signaling pathway in a mouse model of acute lung injury[J]. Mol Med Rep, 2018, 18(5): 4399-4409. doi:10.3892/mmr.2018.9427. [47] Liu ZJ, Gan L, Xu YT, et al. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue[J]. J Pineal Res, 2017, 63(1):e12414. doi:10.1111/jpi.12414. [48] Aye A, Song YJ, Jeon YD, et al. Xanthone suppresses allergic contact dermatitis in vitro and in vivo[J]. Int Immunopharmacol, 2020, 78: 106061. doi:10.1016/j.intimp.2019.106061. [49] Wang GH, Cheng N. Paeoniflorin inhibits mast cell-mediated allergic inflammation in allergic rhinitis[J]. J Cell Biochem, 2018, 119(10): 8636-8642. doi:10.1002/jcb.27135. [50] Hu HL, Li HX. Prunetin inhibits lipopolysaccharide-induced inflammatory cytokine production and MUC5AC expression by inactivating the TLR4/MyD88 pathway in human nasal epithelial cells[J]. Biomed Pharmacother, 2018, 106: 1469-1477. doi:10.1016/j.biopha.2018.07.093. [51] Van Nguyen T, Piao CH, Fan YJ, et al. Anti-allergic rhinitis activity of α-lipoic acid via balancing Th17/Treg expression and enhancing Nrf2/HO-1 pathway signaling[J]. Sci Rep, 2020, 10(1): 12528. doi:10.1038/s41598-020-69234-1. [52] Fu M, Fu SL, Ni SH, et al. Anti-inflammatory effect of epigallocatechin gallate in a mouse model of ovalbumin-induced allergic rhinitis[J]. Int Immunopharmacol, 2017, 49: 102-108. doi:10.1016/j.intimp.2017.05.030. [53] 颜亮, 李陈广, 徐丽慧, 等. 黄芩苷对NLRP3炎症小体活化和细胞焦亡的抑制作用及其机制研究[J]. 免疫学杂志, 2018, 34(2): 93-100,114. doi:10.13431/j.cnki.immunol.j.20180014. YAN Liang, LI Chenguang, XU Lihui, et al. Inhibitory effects of baicalin on NLRP3 inflammasome activation and pyroptosis and the underlying mechanism[J]. Immunological Journal, 2018, 34(2): 93-100, 114. doi:10.13431/j.cnki.immunol.j.20180014. |
[1] | 倪璟滋,万文锦,程雷. 变应性鼻炎健康相关生活质量研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 110-115. |
[2] | 林一杭,李幼瑾. 肠道微生态在儿童变应性鼻炎中的研究现状[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 116-122. |
[3] | 王娜,柴向斌. 前列腺源性ETS因子在哮喘及鼻黏膜炎性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 136-141. |
[4] | 刘一潼,周穗子,邱前辉. NLRP3炎症小体在慢性鼻窦炎和变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 142-146. |
[5] | 龚霄阳,程雷. 新冠疫情期间基于门诊患者的变应性鼻炎患者比例构成分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 245-255. |
[6] | 鹿伟理,姜涛,李宪华. 多重致敏儿童变应性鼻炎患者sIgE特征分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 260-265. |
[7] | 黄开月,李雪情,韩国鑫,张勤修. 基于“肺脾”理论指导穴位埋线治疗变应性鼻炎的Meta分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 266-274. |
[8] | 朱正茹, 张小兵. 中药汤剂结合常规西药治疗变应性鼻炎疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 281-289. |
[9] | 王菲,刘钰莹,肖麒祎,丁健,高尚,毛薇. 住院医师精神心理因素与变应性鼻炎的相关性研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 28-31. |
[10] | 刘寨应民政. 环状RNA在变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 105-112. |
[11] | 林小燕,李静,马志祺,李依琳,高馨怡,李勇. 益生菌治疗变应性鼻炎的临床疗效及抗变态反应作用Meta分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 70-80. |
[12] | 杨晴,陆美萍,程雷. 苏皖地区变应性鼻炎患者气传变应原皮肤点刺试验和血清特异性IgE检测的一致性及相关性分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 40-46. |
[13] | 杨艳艳, 杨玉娟, 宋西成. 芳香烃受体抑制变应性鼻炎Th17免疫应答的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 109-113. |
[14] | 向浏岚,叶远航蒋璐云,刘洋. Tim-3在变应性鼻炎中的作用及机制研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 118-122. |
[15] | 朱正茹张小兵. 高迁移率族蛋白B1与变应性鼻炎的相关性[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 123-128. |
|