山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (3): 142-146.doi: 10.6040/j.issn.1673-3770.0.2021.584
刘一潼1,2,周穗子1,2,邱前辉2
LIU Yitong1,2, ZHOU Suizi1,2Overview,QIU Qianhui2
摘要: 慢性鼻窦炎(CRS)和变应性鼻炎(AR)作为上气道常见的炎症性疾病,其发生发展机制与炎症小体Nod样受体(NLRs)过度激活相关。核苷酸结合寡聚化结构域样受体蛋白3(NLRP3)作为NLRs家族中最受关注的炎症小体,近年来在CRS和AR中的报道也越来越多。本综述既往文献,阐述NLPR3炎症小体在CRS和AR的发病机制、病情进展和疾病治疗等方面所起的作用,为临床工作中探索治疗靶点提供借鉴。
中图分类号:
[1] Sánchez Montalvo A, Gohy S, Rombaux P, et al. The role of IgA in chronic upper airway disease: friend or foe? [J]. Front Allergy, 2022, 3: 852546. doi:10.3389/falgy.2022.852546. [2] Xiao YC, Xu WN, Su WR. NLRP3 inflammasome: a likely target for the treatment of allergic diseases[J]. Clin Exp Allergy, 2018, 48(9): 1080-1091. doi:10.1111/cea.13190. [3] Tieu DD, Kern RC, Schleimer RP. Alterations in epithelial barrier function and host defense responses in chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2009, 124(1): 37-42. doi:10.1016/j.jaci.2009.04.045. [4] Chen MY, Ye XJ, He XH, et al. The signaling pathways regulating NLRP3 inflammasome activation[J]. Inflammation, 2021, 44(4): 1229-1245. doi:10.1007/s10753-021-01439-6. [5] 孙学华, 金树根, 李曼, 等. 先天免疫模式识别受体与病毒感染的研究进展[J]. 中华传染病杂志, 2012, 30(5): 317-320. doi:10.3760/cma.j.issn.1000-6680.2012.05.019. [6] 丁烨, 任静宜, 于洪强, 等. 病原相关分子模式和损伤相关分子模式在免疫炎症反应中的作用[J]. 国际口腔医学杂志, 2016, 43(2): 172-176. doi:10.7518/gjkq.2016.02.013. DING Ye, REN Jingyi, YU Hongqiang, et al. Roles of pathogen-associated and damage-associated molecular patterns in immune inflammatory response[J]. International Journal of Stomatology, 2016, 43(2): 172-176. doi:10.7518/gjkq.2016.02.013. [7] 刘帆, 韩秀珍, 孙妍. Nod样受体蛋白3炎性小体及细胞焦亡在支气管哮喘中的作用[J]. 中华实用儿科临床杂志, 2020, 35(12): 955-957. doi:10.3760/cma.j.cn101070-20200226-00256. LIU Fan, HAN Xiuzhen, SUN Yan. Role of Nod-like receptor pyrin domain 3 inflammasome and pyroptosis in bronchial asthma[J]. Chinese Journal of Applied Clinical Pediatrics, 2020, 35(12): 955-957. doi:10.3760/cma.j.cn101070-20200226-00256. [8] Heneka MT, McManus RM, Latz E. Inflammasome signalling in brain function and neurodegenerative disease[J]. Nat Rev Neurosci, 2018, 19(10): 610-621. doi:10.1038/s41583-018-0055-7. [9] Sandall CF, MacDonald JA. Effects of phosphorylation on the NLRP3 inflammasome[J]. Arch Biochem Biophys, 2019, 670: 43-57. doi:10.1016/j.abb.2019.02.020. [10] Zhang WJ, Chen SJ, Zhou SC, et al. Inflammasomes and fibrosis[J]. Front Immunol, 2021, 12: 643149. doi:10.3389/fimmu.2021.643149. [11] 张慧珊, 叶乐平. 炎性小体与肺部疾病发生及其干预的研究进展[J]. 中华实用儿科临床杂志, 2019, 34(9): 711-714. doi:10.3760/cma.j.issn.2095-428X.2019.09.018. ZHANG Huishan, YE(Le|Yue)(Ping). Advances in inflammasome and pulmonary disease and its intervention[J]. Chinese Journal of Applied Clinical Pediatrics, 2019, 34(9): 711-714. doi:10.3760/cma.j.issn.2095-428X.2019.09.018. [12] Liu QY, Zhang DY, Hu DY, et al. The role of mitochondria in NLRP3 inflammasome activation[J]. Mol Immunol, 2018, 103: 115-124. doi:10.1016/j.molimm.2018.09.010. [13] Wu LY, Ye ZN, Zhou CH, et al. Roles of pannexin-1 channels in inflammatory response through the TLRs/NF-kappa B signaling pathway following experimental subarachnoid hemorrhage in rats[J]. Front Mol Neurosci, 2017, 10: 175. doi:10.3389/fnmol.2017.00175. [14] Groslambert M, Py BF. Spotlight on the NLRP3 inflammasome pathway[J]. J Inflamm Res, 2018, 11: 359-374. doi:10.2147/JIR.S141220. [15] Wu XX, Zhang HY, Qi W, et al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis[J]. Cell Death Dis, 2018, 9(2): 171. doi:10.1038/s41419-017-0257-3. [16] Wang YF, Shi PL, Chen Q, et al. Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation[J]. J Mol Cell Biol, 2019, 11(12): 1069-1082. doi:10.1093/jmcb/mjz020. [17] Gaidt MM, Ebert TS, Chauhan D, et al. Human monocytes engage an alternative inflammasome pathway[J]. Immunity, 2016, 44(4): 833-846. doi:10.1016/j.immuni.2016.01.012. [18] Fokkens W, Desrosiers M, Harvey R, et al. EPOS2020: development strategy and goals for the latest European Position Paper on Rhinosinusitis[J]. Rhinology, 2019, 57(3): 162-168. doi:10.4193/Rhin17.253. [19] 陈杰, 毛弈友, 陈卓, 等. Ⅱ型炎症在慢性鼻窦炎伴鼻息肉中的作用机制和治疗进展[J]. 中华耳鼻咽喉头颈外科杂志, 2020, 55(10): 993-997. doi:10.3760/cma.j.cn115330-20200813-00671. CHEN Jie, MAO Yiyou, CHEN Zhuo, et al. Research progress on the role of type Ⅱ inflammation in chronic rhinosinusitis with polyps[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2020, 55(10): 993-997. doi:10.3760/cma.j.cn115330-20200813-00671. [20] 韩佳琦, 苑国庆, 朱宇彤, 等. 慢性鼻窦炎伴鼻息肉患者血清25-(OH)D3和组织中TGF-β1水平及临床意义[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 23-27. doi:10.6040/j.issn.1673-3770.0.2020.536. HAN Jiaqi, YUAN Guoqing, ZHU Yutong, et al. Serum 25-(OH)D3 and tissue TGF-β1 levels in patients with chronic rhino sinusitis with nasal polyps and their clinical significance[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 23-27. doi:10.6040/j.issn.1673-3770.0.2020.536. [21] Yao Y, Yang CG, Yi X, et al. Comparative analysis of inflammatory signature profiles in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyposis[J]. Biosci Rep, 2020, 40(2): BSR20193101. doi:10.1042/BSR20193101. [22] Wang Y, Chen S, Wang WW, et al. Role of P2X7R in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps[J]. Mol Med Rep, 2021, 24(1): 521. doi:10.3892/mmr.2021.12160. [23] Zhong B, du JT, Liu F, et al. Hypoxia-induced factor-1α induces NLRP3 expression by M1 macrophages in noneosinophilic chronic rhinosinusitis with nasal polyps[J]. Allergy, 2021, 76(2): 582-586. doi:10.1111/all.14571. [24] Gevaert E, Delemarre T, de Volder J, et al. Charcot-Leyden crystals promote neutrophilic inflammation in patients with nasal polyposis[J]. J Allergy Clin Immunol, 2020, 145(1): 427-430.e4. doi:10.1016/j.jaci.2019.08.027. [25] 潘立, 刘争. 基于嗜酸粒细胞性炎症的慢性鼻窦炎伴鼻息肉的分类方法[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(3): 222-226. doi:10.3760/cma.j.issn.1673-0860.2019.03.013. PAN Li, LIU Zheng. Classification of chronic rhinosinusitis with nasal polyps based on eosinophilic inflammation[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2019, 54(3): 222-226. doi:10.3760/cma.j.issn.1673-0860.2019.03.013. [26] 杜志宏, 于亚峰. NLRP3炎性小体在嗜酸粒细胞性鼻息肉发病及复发中的作用[J]. 山东大学耳鼻喉眼学报, 2016, 30(1): 31-35, 39. doi:10.6040/j.issn.1673-3770.0.2015.318. DU Zhihong, YU Yafeng. Effect of NLRP3 inflammasome in the pathogenesis and relapse of eosinophilic nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2016, 30(1): 31-35, 39. doi:10.6040/j.issn.1673-3770.0.2015.318. [27] 王洪, 马燕春. NLRP1、NLRP3炎性体信号通路在儿童炎症性肠病免疫机制中的作用研究[J]. 中国当代儿科杂志, 2020, 22(8): 854-859. doi:10.7499/j.issn.1008-8830.2003097. WANG Hong, MA Yanchun. Role of NLRP1 and NLRP3 inflammasome signaling pathways in the immune mechanism of inflammatory bowel disease in children[J]. Chinese Journal of Contemporary Pediatrics, 2020, 22(8): 854-859. doi:10.7499/j.issn.1008-8830.2003097. [28] Wei Y, Zhang J, Wu XM, et al. Activated pyrin domain containing 3(NLRP3)inflammasome in neutrophilic chronic rhinosinusitis with nasal polyps(CRSwNP)[J]. J Allergy Clin Immunol, 2020, 145(3): 1002-1005.e16. doi:10.1016/j.jaci.2020.01.009. [29] Lee SH, Choi MR, Chung J, et al. Povidone iodine suppresses LPS-induced inflammation by inhibiting TLR4/MyD88 formation in airway epithelial cells[J]. Sci Rep, 2022, 12(1): 3681. doi:10.1038/s41598-022-07803-2. [30] 中华医学会呼吸病学分会哮喘学组. 上-下气道慢性炎症性疾病联合诊疗与管理专家共识[J]. 中华医学杂志, 2017, 97(26): 2001-2022. doi:10.3760/cma.j.issn.0376-2491.2017.26.001. [31] Shi QP, Lei ZW, Cheng G, et al. Mitochondrial ROS activate interleukin-1β expression in allergic rhinitis[J]. Oncol Lett, 2018, 16(3): 3193-3200. doi:10.3892/ol.2018.8984. [32] Wu JH, Wu LZ, Zhang L, et al. Overexpression of miR-224-5p alleviates allergic rhinitis in mice via the TLR4/MyD88/NF-κB pathway[J]. Exp Anim, 2021, 70(4): 440-449. doi:10.1538/expanim.20-0195. [33] Zhang S, Lin SH, Tang QF, et al. Knockdown of miR2055p alleviates the inflammatory response in allergic rhinitis by targeting Bcell lymphoma 6[J]. Mol Med Rep, 2021, 24(5): 818. doi:10.3892/mmr.2021.12458. [34] Yu XF, Wang M, Zhao H, et al. Targeting a novel hsa_circ_0000520/miR-556-5p/NLRP3 pathway-mediated cell pyroptosis and inflammation attenuates ovalbumin(OVA)-induced allergic rhinitis(AR)in mice models[J]. Inflamm Res, 2021, 70(6): 719-729. doi:10.1007/s00011-021-01472-z. [35] Xiao LF, Jiang L, Hu Q, et al. microRNA-133b ameliorates allergic inflammation and symptom in murine model of allergic rhinitis by targeting Nlrp3[J]. Cell Physiol Biochem, 2017, 42(3): 901-912. doi:10.1159/000478645. [36] Li J, Zhang Y, Zhang L, et al. Fine particulate matter exposure exacerbated nasal mucosal damage in allergic rhinitis mice via NLRP3 mediated pyroptosis[J]. Ecotoxicol Environ Saf, 2021, 228: 112998. doi:10.1016/j.ecoenv.2021.112998. [37] Yang ZX, Liang CQ, Wang TY, et al. NLRP3 inflammasome activation promotes the development of allergic rhinitis via epithelium pyroptosis[J]. Biochem Biophys Res Commun, 2020, 522(1): 61-67. doi:10.1016/j.bbrc.2019.11.031. [38] Zhang WT, Ba GY, Tang R, et al. Ameliorative effect of selective NLRP3 inflammasome inhibitor MCC950 in an ovalbumin-induced allergic rhinitis murine model[J]. Int Immunopharmacol, 2020, 83: 106394. doi:10.1016/j.intimp.2020.106394. [39] Li Y, Ouyang YH, Jiao J, et al. Exposure to environmental black carbon exacerbates nasal epithelial inflammation via the reactive oxygen species(ROS)-nucleotide-binding, oligomerization domain-like receptor family, pyrin domain containing 3(NLRP3)-caspase-1-interleukin 1β(IL-1β)pathway[J]. Int Forum Allergy Rhinol, 2021, 11(4): 773-783. doi:10.1002/alr.22669. [40] Xu JT, Zhang Q, Li ZX, et al. Astragalus polysaccharides attenuate ovalbumin-induced allergic rhinitis in rats by inhibiting NLRP3 inflammasome activation and NOD2-mediated NF-κB activation[J]. J Med Food, 2021, 24(1): 1-9. doi:10.1089/jmf.2020.4750. |
[1] | 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14. |
[2] | 熊攀辉,沈暘,杨玉成. 基于表型和内在型的慢性鼻窦炎诊治进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 15-19. |
[3] | 姚爽,娄鸿飞. 慢性鼻窦炎的内在型研究进展及精准医疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 20-29. |
[4] | 石帅,郑泉,程雷. 度普利尤单抗在慢性鼻窦炎伴鼻息肉治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 36-42. |
[5] | 王欢,胡俐,余洪猛. 慢性鼻窦炎相关嗅觉功能障碍研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 43-49. |
[6] | 宜若男,陈福权. 嗜酸性粒细胞与嗅觉功能障碍[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 50-55. |
[7] | 谷钰,万鑫,肖自安. 中性粒细胞和嗜酸性粒细胞在慢性鼻窦炎中的相互影响及临床治疗思考[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 56-63. |
[8] | 林海,朱莹,张维天. 慢性鼻窦炎发病中离子通道作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 64-70. |
[9] | 乔新杰,赵玉林. 慢性鼻窦炎中上皮间质转化信号转导通路及其他相关因子的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 71-77. |
[10] | 黄丹怡,张婷,陈静,张薇. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83. |
[11] | 李佳倪,朱冬冬,孟粹达. 表观遗传学在慢性鼻窦炎伴鼻息肉发病机制中的作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 84-91. |
[12] | 曹轩,肖旭平,李云秋. 透明质酸在慢性鼻窦炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 104-109. |
[13] | 倪璟滋,万文锦,程雷. 变应性鼻炎健康相关生活质量研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 110-115. |
[14] | 林一杭,李幼瑾. 肠道微生态在儿童变应性鼻炎中的研究现状[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 116-122. |
[15] | 刘真,宋西成. 细胞焦亡在变应性鼻炎中的作用机制及研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 123-129. |
|