山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (3): 11-18.doi: 10.6040/j.issn.1673-3770.0.2025.054
• 上海市第六人民医院耳鼻咽喉头颈外科献礼“六院120周年”纪念专题 • 上一篇
陈铭,柯冰冰,崔雅琦,吴翠萍,陈正侬,李春燕,殷善开
CHEN Ming, KE Bingbing, CUI Yaqi, WU Cuiping, CHEN Zhengnong, LI Chunyan, YIN Shankai
摘要: 目的 探究烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NAD+)对顺铂(cisplatin, Cis)诱导耳毒性的拮抗效果和机制。 方法 体外实验采用HEI-OC1细胞系和出生后3 d的C57BL/6J乳鼠耳蜗基底膜培养模型,评估NAD+对Cis毒性的拮抗作用;在体实验通过鼓室注射Cis和NAD+于C57BL/6J成年小鼠,并进行听觉脑干反应测试;采用转录组测序分析HEI-OC1细胞中Cis组与Cis+NAD+组之间的差异基因;定量聚合酶链式反应对关键基因进行验证。 结果 NAD+能够显著提高HEI-OC1细胞在Cis处理下的细胞活力,并有效减少细胞凋亡。NAD+显著提高耳蜗毛细胞的存活率以及减少活性氧的产生,并有效拮抗Cis引起的听力损失。转录组分析结果显示,Cis+NAD+组中共有204个基因上调表达、214个基因下调表达,差异表达基因显著富集于“铂类药物抗药性”和“谷胱甘肽代谢”等信号通路,并且Gstm6和Gsta2与抗氧化应激、药物代谢和细胞保护相关的关键基因表达显著上调。 结论 NAD+在一定程度上能够拮抗Cis引起的耳毒性,其机制可能与调控谷胱甘肽代谢通路从而拮抗氧化应激损伤有关,提示了NAD+具有一定的治疗潜力。
中图分类号:
| [1] Rancoule C, Guy JB, Vallard A, et al. 50th anniversary of cisplatin[J]. Bull Cancer, 2017, 104(2): 167-176. doi:10.1016/j.bulcan.2016.11.011 [2] Karasawa T, Steyger PS. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity[J]. Toxicol Lett, 2015, 237(3): 219-227. doi:10.1016/j.toxlet.2015.06.012 [3] Hazlitt RA, Min J, Zuo J. Progress in the development of preventative drugs for cisplatin-induced hearing loss[J]. J Med Chem, 2018, 61(13): 5512-5524. doi:10.1021/acs.jmedchem.7b01653 [4] Marshak T, Steiner M, Kaminer M, et al. Prevention of cisplatin-induced hearing loss by intratympanic dexamethasone: a randomized controlled study[J]. Otolaryngol Head Neck Surg, 2014, 150(6): 983-990. doi:10.1177/0194599814524894 [5] Laurell G. Pharmacological intervention in the field of ototoxicity[J]. HNO, 2019, 67(6): 434-439. doi:10.1007/s00106-019-0663-1 [6] Gentilin E, Simoni E, Candito M, et al. Cisplatin-induced ototoxicity: updates on molecular targets[J]. Trends Mol Med, 2019, 25(12): 1123-1132. doi:10.1016/j.molmed.2019.08.002 [7] Freyer DR, Brock PR, Chang KW, et al. Prevention of cisplatin-induced ototoxicity in children and adolescents with cancer: a clinical practice guideline[J]. Lancet Child Adolesc Health, 2020, 4(2): 141-150. doi:10.1016/S2352-4642(19)30336-0 [8] Katsyuba E, Romani M, Hofer D, et al. NAD+ homeostasis in health and disease[J]. Nat Metab, 2020, 2(1): 9-31. doi:10.1038/s42255-019-0161-5 [9] Kim HJ, Oh GS, Shen A, et al. Augmentation of NAD(+)by NQO1 attenuates cisplatin-mediated hearing impairment[J]. Cell Death Dis, 2014, 5(6): e1292. doi:10.1038/cddis.2014.255 [10] Zhan T, Xiong H, Pang JQ, et al. Modulation of NAD+ biosynthesis activates SIRT1 and resists cisplatin-induced ototoxicity[J]. Toxicol Lett, 2021, 349: 115-123. doi:10.1016/j.toxlet.2021.05.013 [11] Fang J, Wu HM, Zhang JN, et al. A reduced form of nicotinamide riboside protects the cochlea against aminoglycoside-induced ototoxicity by SIRT1 activation[J]. Biomed Pharmacother, 2022, 150: 113071. doi:10.1016/j.biopha.2022.113071 [12] Hwang ES, Song SB. Possible adverse effects of high-dose nicotinamide: mechanisms and safety assessment[J]. Biomolecules, 2020, 10(5): 687. doi:10.3390/biom10050687 [13] Shen Q, Zhang SJ, Xue YZ, et al. Biological synthesis of nicotinamide mononucleotide[J]. Biotechnol Lett, 2021, 43(12): 2199-2208. doi:10.1007/s10529-021-03191-1 [14] Dehne N, Lautermann J, Petrat F, et al. Cisplatin ototoxicity: involvement of iron and enhanced formation of superoxide anion radicals[J]. Toxicol Appl Pharmacol, 2001, 174(1): 27-34. doi:10.1006/taap.2001.9171 [15] Guo XR, Bai XH, Li L, et al. Forskolin protects against cisplatin-induced ototoxicity by inhibiting apoptosis and ROS production[J]. Biomed Pharmacother, 2018, 99: 530-536. doi:10.1016/j.biopha.2018.01.080 [16] Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence[J]. Cell Metab, 2018, 27(3): 529-547. doi:10.1016/j.cmet.2018.02.011 [17] Brown KD, Maqsood S, Huang JY, et al. Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss[J]. Cell Metab, 2014, 20(6): 1059-1068. doi:10.1016/j.cmet.2014.11.003 [18] Morita K, Maeda S, Suzuki K, et al. Paradoxical enhancement of leukemogenesis in acute myeloid leukemia with moderately attenuated RUNX1 expressions[J]. Blood Adv, 2017, 1(18): 1440-1451. doi:10.1182/bloodadvances.2017007591 [19] Ren CJ, Zhu YY, Li QQ, et al. Lespedeza bicolor Turcz. honey prevents inflammation response and inhibits ferroptosis by Nrf2/HO-1 pathway in DSS-induced human caco-2 cells[J]. Antioxidants(Basel), 2024, 13(8): 900. doi:10.3390/antiox13080900 |
| [1] | 柯冰冰,陈铭,王洪阳,李春燕,殷善开. CAMK4介导胆红素所致听觉中枢神经元氧化应激损伤[J]. 山东大学耳鼻喉眼学报, 2025, 39(3): 1-10. |
| [2] | 许莞菁,孙雨浩,赵军. 姜黄素的抗氧化性对视网膜退行性疾病的影响[J]. 山东大学耳鼻喉眼学报, 2025, 39(1): 146-151. |
| [3] | 李钰,刘皓,王敏,付小龙,李文. mTOR通路在耳蜗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(5): 112-118. |
| [4] | 周静,毕秀丽,肖雨,胡俊,付小龙,于亚峰. 盐酸氯米帕明保护听觉毛细胞免受新霉素诱导的损伤[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 22-27. |
| [5] | 索安奇,孙聚兴,牛红燕,周艳秋,牛鹏昊,毛文伟,李晓瑜,杨欣欣. 耳部钢筋复杂穿刺伤救治1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 79-83. |
| [6] | 周颖东,张梦娴,王青玲,康浩然,郭向东. 氧化应激在老年性聋发病机制中的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 72-78. |
| [7] | 索安奇,杨欣欣. 线粒体自噬与头颈部鳞状细胞癌关系的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 111-117. |
| [8] | 李孟婷,何书喜,王华. 炎症因子在圆锥角膜中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 151-158. |
| [9] | 苏杰,杨馥宇,李猛,陈荟茹,蒋利生,王丽香. GLP-1诱导的自噬对糖尿病大鼠视网膜病变的保护作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 30-34. |
| [10] | 杨琨, 陈利娟, 何小丹, 刘志奇, 沙素华. 卡那霉素和2-羟丙基-β-环糊精耳毒性的比较研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 6-11. |
| [11] | 李祯,崔丽梅,孙岩. 骨形态发生蛋白4在内耳发育及在毛细胞与螺旋神经节细胞再生中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 108-112. |
| [12] | 张依,王文俊,杨安怀. SIRT1激动剂白藜芦醇在眼部疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 151-156. |
| [13] | 盘琳琳, 孔令漪, 翟丰, 陈洁. 新生儿听力障碍常见危险因素及听力筛查方法研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 131-137. |
| [14] | 付奕豪,徐逸轩,严宏,张婕. 谷氧还蛋白在眼病中的作用研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 125-130. |
| [15] | 韩继波,邹游,杨蕊,陶泽璋. Notch受体调控上皮-间质转化对鼻咽癌细胞顺铂耐药的影响[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 105-110. |
|
||