山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (3): 11-18.doi: 10.6040/j.issn.1673-3770.0.2025.054

• 上海市第六人民医院耳鼻咽喉头颈外科献礼“六院120周年”纪念专题 • 上一篇    

NAD+对顺铂所致毛细胞氧化应激损伤的拮抗作用及相关基因表达调控

陈铭,柯冰冰,崔雅琦,吴翠萍,陈正侬,李春燕,殷善开   

  1. 上海交通大学医学院附属第六人民医院 耳鼻咽喉头颈外科, 上海 200233
  • 发布日期:2025-06-04
  • 通讯作者: 李春燕. E-mail:7250012693@shsmu.edu.cn
  • 基金资助:
    国家自然科学基金优秀青年科学基金(82322020);国家重点研发计划青年科学家项目(2023YFC2509800)

The antagonistic effects of NAD+ on cisplatin-induced oxidative stress injury in hair cells and the regulation of related gene expression

CHEN Ming, KE Bingbing, CUI Yaqi, WU Cuiping, CHEN Zhengnong, LI Chunyan, YIN Shankai   

  1. Department of Otorhinolaryngology & Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
  • Published:2025-06-04

摘要: 目的 探究烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NAD+)对顺铂(cisplatin, Cis)诱导耳毒性的拮抗效果和机制。 方法 体外实验采用HEI-OC1细胞系和出生后3 d的C57BL/6J乳鼠耳蜗基底膜培养模型,评估NAD+对Cis毒性的拮抗作用;在体实验通过鼓室注射Cis和NAD+于C57BL/6J成年小鼠,并进行听觉脑干反应测试;采用转录组测序分析HEI-OC1细胞中Cis组与Cis+NAD+组之间的差异基因;定量聚合酶链式反应对关键基因进行验证。 结果 NAD+能够显著提高HEI-OC1细胞在Cis处理下的细胞活力,并有效减少细胞凋亡。NAD+显著提高耳蜗毛细胞的存活率以及减少活性氧的产生,并有效拮抗Cis引起的听力损失。转录组分析结果显示,Cis+NAD+组中共有204个基因上调表达、214个基因下调表达,差异表达基因显著富集于“铂类药物抗药性”和“谷胱甘肽代谢”等信号通路,并且Gstm6和Gsta2与抗氧化应激、药物代谢和细胞保护相关的关键基因表达显著上调。 结论 NAD+在一定程度上能够拮抗Cis引起的耳毒性,其机制可能与调控谷胱甘肽代谢通路从而拮抗氧化应激损伤有关,提示了NAD+具有一定的治疗潜力。

关键词: 顺铂, 毛细胞, 基底膜, 烟酰胺腺嘌呤二核苷酸, 活性氧, 氧化应激, 听力障碍

Abstract: Objective The present study aims to investigate the effect and underlying mechanism of nicotinamide adenine dinucleotide(NAD+). The present study aims to explore the mitigating effect of NAD+ on cisplatin-induced ototoxicity, with a view to elucidating the underlying mechanism. Methods In vitro, HEI-OC1 cells and cochlear basement membrane cultures from 3-day-old C57BL/6J mice were utilized to evaluate the protective effects of NAD+ against cisplatin-induced toxicity. In vivo, the administration of cisplatin and NAD+ was conducted via tympanic injections in adult C57BL/6J mice, followed by auditory brainstem response testing. Transcriptome sequencing was performed to analyze differential gene expression between the cisplatin and cisplatin+ NAD+ groups in HEI-OC1 cells, and the quantitative polymerase chain reaction was applied to validate the key genes. Results The present study investigates the impact of NAD+ on the viability of HEI-OC1 cells exposed to cisplatin, with a particular focus on the phenomenon of apoptosis. The results demonstrate a significant enhancement in cell viability in the presence of NAD+, accompanied by a substantial reduction in apoptosis. In the cochlear basilar membrane model, NAD+ significantly increased hair cell survival and decreased reactive oxygen species(ROS)production. Furthermore, NAD+ effectively mitigated cisplatin-induced hearing loss in vivo. Transcriptome analysis revealed 204 genes to be significantly overexpressed and 214 genes to be significantly underexpressed in the cisplatin + NAD+ group, with differential genes notably enriched in the Platinum drug resistance and Glutathione metabolism pathways. Key genes associated with oxidative stress, drug metabolism, and cyto-protection, such as Gstm6 and Gsta2 were significantly upregulated. Conclusion NAD+ has been demonstrated to possess a protective effect against cisplatin-induced ototoxicity, potentially by modulating the glutathione metabolism pathway in order to counteract oxidative stress. Consequently, these findings imply that NAD+ has therapeutic potential in preventing cisplatin-induced hearing loss.

Key words: Cisplatin, Hair cells, Cochlear basement membrane, Nicotinamide adenine dinucleotide, Reactive oxygen species, Oxidative stress, Hearing impairment

中图分类号: 

  • R764.43
[1] Rancoule C, Guy JB, Vallard A, et al. 50th anniversary of cisplatin[J]. Bull Cancer, 2017, 104(2): 167-176. doi:10.1016/j.bulcan.2016.11.011
[2] Karasawa T, Steyger PS. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity[J]. Toxicol Lett, 2015, 237(3): 219-227. doi:10.1016/j.toxlet.2015.06.012
[3] Hazlitt RA, Min J, Zuo J. Progress in the development of preventative drugs for cisplatin-induced hearing loss[J]. J Med Chem, 2018, 61(13): 5512-5524. doi:10.1021/acs.jmedchem.7b01653
[4] Marshak T, Steiner M, Kaminer M, et al. Prevention of cisplatin-induced hearing loss by intratympanic dexamethasone: a randomized controlled study[J]. Otolaryngol Head Neck Surg, 2014, 150(6): 983-990. doi:10.1177/0194599814524894
[5] Laurell G. Pharmacological intervention in the field of ototoxicity[J]. HNO, 2019, 67(6): 434-439. doi:10.1007/s00106-019-0663-1
[6] Gentilin E, Simoni E, Candito M, et al. Cisplatin-induced ototoxicity: updates on molecular targets[J]. Trends Mol Med, 2019, 25(12): 1123-1132. doi:10.1016/j.molmed.2019.08.002
[7] Freyer DR, Brock PR, Chang KW, et al. Prevention of cisplatin-induced ototoxicity in children and adolescents with cancer: a clinical practice guideline[J]. Lancet Child Adolesc Health, 2020, 4(2): 141-150. doi:10.1016/S2352-4642(19)30336-0
[8] Katsyuba E, Romani M, Hofer D, et al. NAD+ homeostasis in health and disease[J]. Nat Metab, 2020, 2(1): 9-31. doi:10.1038/s42255-019-0161-5
[9] Kim HJ, Oh GS, Shen A, et al. Augmentation of NAD(+)by NQO1 attenuates cisplatin-mediated hearing impairment[J]. Cell Death Dis, 2014, 5(6): e1292. doi:10.1038/cddis.2014.255
[10] Zhan T, Xiong H, Pang JQ, et al. Modulation of NAD+ biosynthesis activates SIRT1 and resists cisplatin-induced ototoxicity[J]. Toxicol Lett, 2021, 349: 115-123. doi:10.1016/j.toxlet.2021.05.013
[11] Fang J, Wu HM, Zhang JN, et al. A reduced form of nicotinamide riboside protects the cochlea against aminoglycoside-induced ototoxicity by SIRT1 activation[J]. Biomed Pharmacother, 2022, 150: 113071. doi:10.1016/j.biopha.2022.113071
[12] Hwang ES, Song SB. Possible adverse effects of high-dose nicotinamide: mechanisms and safety assessment[J]. Biomolecules, 2020, 10(5): 687. doi:10.3390/biom10050687
[13] Shen Q, Zhang SJ, Xue YZ, et al. Biological synthesis of nicotinamide mononucleotide[J]. Biotechnol Lett, 2021, 43(12): 2199-2208. doi:10.1007/s10529-021-03191-1
[14] Dehne N, Lautermann J, Petrat F, et al. Cisplatin ototoxicity: involvement of iron and enhanced formation of superoxide anion radicals[J]. Toxicol Appl Pharmacol, 2001, 174(1): 27-34. doi:10.1006/taap.2001.9171
[15] Guo XR, Bai XH, Li L, et al. Forskolin protects against cisplatin-induced ototoxicity by inhibiting apoptosis and ROS production[J]. Biomed Pharmacother, 2018, 99: 530-536. doi:10.1016/j.biopha.2018.01.080
[16] Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence[J]. Cell Metab, 2018, 27(3): 529-547. doi:10.1016/j.cmet.2018.02.011
[17] Brown KD, Maqsood S, Huang JY, et al. Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss[J]. Cell Metab, 2014, 20(6): 1059-1068. doi:10.1016/j.cmet.2014.11.003
[18] Morita K, Maeda S, Suzuki K, et al. Paradoxical enhancement of leukemogenesis in acute myeloid leukemia with moderately attenuated RUNX1 expressions[J]. Blood Adv, 2017, 1(18): 1440-1451. doi:10.1182/bloodadvances.2017007591
[19] Ren CJ, Zhu YY, Li QQ, et al. Lespedeza bicolor Turcz. honey prevents inflammation response and inhibits ferroptosis by Nrf2/HO-1 pathway in DSS-induced human caco-2 cells[J]. Antioxidants(Basel), 2024, 13(8): 900. doi:10.3390/antiox13080900
[1] 柯冰冰,陈铭,王洪阳,李春燕,殷善开. CAMK4介导胆红素所致听觉中枢神经元氧化应激损伤[J]. 山东大学耳鼻喉眼学报, 2025, 39(3): 1-10.
[2] 许莞菁,孙雨浩,赵军. 姜黄素的抗氧化性对视网膜退行性疾病的影响[J]. 山东大学耳鼻喉眼学报, 2025, 39(1): 146-151.
[3] 李钰,刘皓,王敏,付小龙,李文. mTOR通路在耳蜗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(5): 112-118.
[4] 周静,毕秀丽,肖雨,胡俊,付小龙,于亚峰. 盐酸氯米帕明保护听觉毛细胞免受新霉素诱导的损伤[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 22-27.
[5] 索安奇,孙聚兴,牛红燕,周艳秋,牛鹏昊,毛文伟,李晓瑜,杨欣欣. 耳部钢筋复杂穿刺伤救治1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 79-83.
[6] 周颖东,张梦娴,王青玲,康浩然,郭向东. 氧化应激在老年性聋发病机制中的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 72-78.
[7] 索安奇,杨欣欣. 线粒体自噬与头颈部鳞状细胞癌关系的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 111-117.
[8] 李孟婷,何书喜,王华. 炎症因子在圆锥角膜中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 151-158.
[9] 苏杰,杨馥宇,李猛,陈荟茹,蒋利生,王丽香. GLP-1诱导的自噬对糖尿病大鼠视网膜病变的保护作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 30-34.
[10] 杨琨, 陈利娟, 何小丹, 刘志奇, 沙素华. 卡那霉素和2-羟丙基-β-环糊精耳毒性的比较研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 6-11.
[11] 李祯,崔丽梅,孙岩. 骨形态发生蛋白4在内耳发育及在毛细胞与螺旋神经节细胞再生中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 108-112.
[12] 张依,王文俊,杨安怀. SIRT1激动剂白藜芦醇在眼部疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 151-156.
[13] 盘琳琳, 孔令漪, 翟丰, 陈洁. 新生儿听力障碍常见危险因素及听力筛查方法研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 131-137.
[14] 付奕豪,徐逸轩,严宏,张婕. 谷氧还蛋白在眼病中的作用研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 125-130.
[15] 韩继波,邹游,杨蕊,陶泽璋. Notch受体调控上皮-间质转化对鼻咽癌细胞顺铂耐药的影响[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!