JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY) ›› 2017, Vol. 31 ›› Issue (3): 55-59.doi: 10.6040/j.issn.1673-3770.0.2017.228

Previous Articles     Next Articles

Immunocompetence of nasal epithelial cells in allergic rhinitis.

SHA Jichao, ZHANG Ce, ZHU Dongdong   

  1. Department of Otolaryngology Head Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
  • Received:2017-05-22 Online:2017-06-16 Published:2017-06-16

Abstract: Although much is known about the imbalance of Th1/Th2 in allergic rhinitis(AR), the role of nasal epithelial cells as the first line of mucosal defense against inhaled pathogens remains undefined, despite the growing concern surrounding it. We now realize that epithelial cells recognize allergens through expression of pattern-recognition receptors and then mount the innate and adaptive immune responses. Therefore, epithelial cells are crucial in determining the outcome of allergen inhalation in AR. Here, we will review the literature on immunocompetence of nasal epithelial cells in AR.

Key words: Crosstalk, Allergic rhinitis, Nasal epithelial cells

CLC Number: 

  • R765.21
[1] 韩德民,张罗,董震,等. 过敏性鼻炎[M]. 北京:人民卫生出版社, 2014.
[2] Pawankar R, Canonica GW, Holgate ST, et al. WAO White Book on Allergy 2011-2012: Executive Summary.
[3] Brozek JL, Bousquent J, Baena-Cagnani CE, Global Allergy and Asthma European Network;Grading of Recommendations Assessment, Development and Evaluation Working Group, et al. Allergic rhinitis and its impact on Asthma(ARIA)guidelines: 2010 revision[J]. J Allergy Clin Immunol, 2010, 126(3):466-476.
[4] Greiner AN, Hellings PW, Rotiroti G, et al. Allergic rhinitis[J]. Lancet, 2011, 378(9809):2112-2122.
[5] Rondon C, Canto G, Blanca M. Local allergic rhinitis: a new entity, characterization and further studies[J]. Curr Opin Allergy Clin Immunol, 2010, 10(1):1-7.
[6] Kato A, Schleimer RP. Beyond inflammation: airway epithelial cells are at the interface of innate and adaptive immunity[J]. Cur Opin Immunol, 2007, 19(6):711-720.
[7] Lee MS, Kim YJ. Signaling pathways downstream of pattern-recognition receptors and their cross talk[J]. Ann Rev Biochem, 2007, 76:447-480.
[8] Sha Q,Truong-Tran AQ, Plitt JR, et al. Activation of airway epithelial cells by toll-like receptor agonists[J]. Am J Respir Cell Mol Biol, 2004, 31(3):358-364.
[9] Wang Y, Bai C, Li K, et al. Role of airway epithelial cells in development of asthma and allergic rhinitis[J]. Respir Med, 2008,102(7):949-955.
[10] Netea MG, Azam T, Ferwerda G, et al. IL-32 synergizes with nucleotide oligomerization domain(NOD)1 and NOD2 ligands for IL-1beta and IL-6 production throuh a caspase 1-dependent mechanism[J]. Proc Natl Acad Sci USA, 2005, 102(45):16309-16314.
[11] Barik S. What really rigs up RIG-I?[J]. J Innate Immun, 2016, 8(5):429-436.
[12] Tyagi N, Farnell EJ, Fitzsimmons CM, et al. Comparisons of allergenic and metazoan parasite proteins: allergy the price of immunity[J]. PloS Comput Biol, 2015, 11(10): e1004546.
[13] Herbert CA, King CM, Ring PC, et al. Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1[J]. Am J Respir Cell Mol Biol, 1995, 12(4):369-378.
[14] Tulic MK, Vivinus NM, Rekima A, et al. Presence of commensal house dust mite allergen in human gastrointestinal tract: a potential contributor to intestinal barrier dysfunction[J]. Gut, 2016, 65(5):757-766.
[15] Post S, Nawijn MC, Jonker MR, et al. House dust mite-induced calcium signaling instigates epithelial barrier dysfunction and CCL20 production[J]. Allergy, 2013, 68(9): 1117-1125.
[16] Heijink IH, van Oosterhout A, Kapus A. Epidermal growth factor receptor signalling contributes to house dust mite-induced epithelial barrier dysfunction[J]. Eur Respir J, 2010, 36(5):1016-1026.
[17] Georas SN, Rezaee F. Epithelial barrier function: at the frontline of asthma immunology and allergic airway inflammation[J]. J Allergy Clin Immunol, 2014, 134(3):509-520.
[18] Bohm M, Avgitidou G, Hassan E, et al. Liposomes: a new non-pharmcological therapy concept for seasonal-allergicrhinoconjunctivitis[J]. Eur Arch Otorhinolaryngol, 2012, 269(2):495-502.
[19] Ichikawa K, Asai T, Shimizu K, et al. Suppression of immune response by antigen-modified liposomes encapsulatin model agents: a novel strategy for the treatment of allergy[J]. J Control Release, 2013, 167(3):284-289.
[20] Hwa HG, Hyouk-Soo K, Keun-Ai M, et al. Clusterin modulates allergic airway inflammation by attenuating CCL20-mediated dendritic cell recruitment[J]. J Immunol, 2016, 196(5):2021-2030.
[21] Oliver JB, Sangeeta S, Catherine M, et al. Transforming Growth factor-β and interleulin-1β signaling pathways converge on the chemokine CCL20 promoter[J]. J Biol Chem, 2015, 290(23):14717-14728.
[22] Wu NL, Huang DY, Tsou HN, et al. Syk mediates IL-17-induced CCL20 expression by targeting Act1-dependent K63-linked ubiquitination of TRAF6[J]. J Invest Dermatol,2015, 135(2):490-498.
[23] Pichavant M, Charbonnier AS, Taront S, et al. Asthma bronchial epithelium activated by the proteolytic allergen Der p1 increases selective dendritic cell recruitment[J]. J Allergy Clin Immunol, 2005, 115(4):771-778.
[24] Osterlund C, Gronlund H, Polovic N, et al. The non-proteolytic house dust mite allergen Der p2 induce NF-kappaB and MAPK dependent activation of bronchial epithelial cells[J]. Clin Exp Allergy, 2009, 39(8):1199-1208.
[25] Tibor ZV, Sabrina V, Emma S, et al. Aeroallergen challenge promotes dendritic cell proliferation in the airways[J]. J Immunol, 2013, 190(3):897-903.
[26] Mitchell PD, OByrne PM. Biologics and the lung: TSLP and other epithelial cell-derived cytokines in asthma[J]. Pharmacol Ther, 2016, June:[epub ahead of print].
[27] Meng Q, Liu X, Li P, et al. The influence of house dust mite sublingual immunotherapy on the TSLP-OX40L signaling pathway in patients with allergic rhinitis[J]. Int Form Allergy Rhinol, 2016, March:[epub ahead of print].
[28] McNamara PS, Fonceca AM, Howarth D, et al. Respiratory syncytial virus infection of airway epithelial cells, in vivo and in vitro, supports pulmonary antibody responses by inducing expression of the B cell differentiation factor BAFF[J]. Thorax, 2013, 68(1):76-81.
[29] Kato A, Truong-Tran AQ, Scott AL, et al. Airway epithelial cells produce B cell-activating factor of TNF family by an IFN-beta-dependent mechanism[J]. J Immunol, 2006, 177(10):7164-7172.
[30] Litinskiy MB, Nardelli B, Hilbert DM, et al. DCs induce CD40-independent immunoglobulin class swithing through BLyS and APRIL. Nat Immunol, 2002, 3(9):882-829.
[31] Meng H, Li H, Ohe R, et al. Thymic stromal lymphopoietin in tonsillar follicular dendritic cells correlates with elevated serum immunoglobulin A titer by promoting tonsillar immunoglobulin A class switch in immunoglobulin A nephropathy[J]. Transl Res, 2016, Apir:[epub ahead of print].
[32] Ying S, O’Connor B, Ratoff J, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity[J]. J Immunol, 2005, 174(12):8183-8190.
[33] Montes-Vizuet R, Vega-Miranda A, Valencia-Maqueda E, et al. CC chemokine ligand 1 is released into the airways of atopic asthmatics[J]. Eur Respir J, 2006, 28(1):59-67.
[34] Heijink IH, Marcel Kies P, van Oosterhout AJ, et al. Derp, IL-4, and TGF-beta cooperatively induce EGFR-dependent TARC expression in airway epithelum[J]. Am J Respir Cell Mol Biol, 2007, 36(3):351-359.
[35] Ajram L, Begg M, Slack R, et al. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists[J]. Eur J Pharmacol, 2014, 729(1):75-85.
[36] Sacco O, Lantero S, Scarso L, et al. Modulation of HLA-DR antigen and ICAM-1 molecule expression on airway eptiehlial cells by sodium nedocromil[J]. Ann Allergy Asthma Immunol, 1999, 83(1):49-54.
[37] Shelfoon C, Shariff S, Traves SL, et al. Chemokine release from human rhinovirus-infected airway epithelial cells promotes fibroblast migration[J]. J Allergy Clin Immunol, 2016, 138(1):114-122.
[38] Fenwick PS, Macedo P, Kilty IC, et al. Effect of JAK inhibitors on release of CXCL9, CXCL10, and CXCL 11 form human airway epithelial cells[J]. Plos One, 2015, 10(6):e0128757.
[39] Girolamo P, Alessandro V, Maria TB, et al. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma[J]. Mediators Inflamm, 2015, 2015:879783.
[40] Zou JY, Huang SH, Li Y, et al. Airway epithelial cell-derived insulin-like growth factor-1 triggers skewed CD8(+)T cell polarization[J]. Cell Biol Int, 2014, 38(10):1148-54.
[1] WANG Tan, WU Ke, LI Lianqing, GONG Lili. Factors associated with systemic adverse reactions after subcutaneous immunotherapy injections and treatment options [J]. J Otolaryngol Ophthalmol Shandong Univ, 2018, 32(5): 71-74.
[2] LU Hangui, LIN Xinsheng, YAO Danmian, WEI Yongxin, LI Chuangwei. Expression of IL-35 in allergic rhinitis and its effect on the immunoregulation of T cells [J]. J Otolaryngol Ophthalmol Shandong Univ, 2018, 32(5): 66-70.
[3] PU Hongbo, DU Xiaodong. Allergen test results in 2 000 patients with allergic rhinitis in Wuxi District [J]. J Otolaryngol Ophthalmol Shandong Univ, 2018, 32(4): 105-107.
[4] CHEN Ming, YU Xuefei. Opinions on the treatment of chronic rhinosinusitis with allergic rhinitis [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(3): 18-22.
[5] GAN Bin, ZHANG Yongju, XU Anting. BRF2 in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(3): 47-53.
[6] WU Xiangping. Influence of patient management on the clinical effect of sublingual dermatophagoides farinae drops in patients [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(3): 68-72.
[7] LI Song, WANG Zonggui, YANG Jingpu, ZHANG Zhuping. Progress of transnasal endoscopic vidian neurectomy [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(1): 72-76.
[8] ZHI Lili, SONG Daoliang. Expressions of eosinophils and IL5 in antrochoanal polyps and nasal polyps. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 43-46.
[9] WAN Wenjin, WANG Wen, CHENG Lei. A meta-analysis of subcutaneous immunotherapy and sublingual immunotherapy in the treatment of dust mite-allergic rhinitis. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 103-108.
[10] SHI Li, ZHAO Li, ZHANG Hongping. Long-term anti-inflammatory treatment of allergic rhinitis. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(3): 9-12.
[11] LIU Jing. Treatment of allergic rhinitis using syndrome differentiation based on the concept of “holism” in TCM. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(3): 28-30.
[12] CHENG Lei, QIAN Junjun, TIAN Huiqin. Research progresses on allergic rhinitis. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(3): 1-3.
[13] XU Yu, TAO Zezhang. Pharmacotherapeutic strategies for allergic rhinitis:Ithe importance of individualization and normalization. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(3): 4-8.
[14] LI Lizhu, WU Qing, YI Xin, TIAN Li. Research progress on the animal model of allergic rhinitis in traditional Chinese medicine. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(3): 60-63.
[15] XIANG Nan, ZHANG Qinxiu. Experience of professor Zhang Qinxiu in the treatment of perennial allergic rhinitis. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(3): 100-102.
Full text



No Suggested Reading articles found!