Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2024, Vol. 38 ›› Issue (2): 163-168.doi: 10.6040/j.issn.1673-3770.0.2023.333

• Review • Previous Articles    

Role of Toll-like receptor 4/nuclear transcription factor-κB channels in diabetic retinopathy

LUN Yingjun1, CHEN Chen2, GAO Hongcheng2, FAN Qinglin3, TAI Renqing1   

  1. 1. Department of Clinical Medical College, Weifang Medical College, Weifang 261000, Shandong, China2. Department of Ophthalmology, Linyi People's Hospital, Linyi 276000, Shandong, China3. Department of Postgraduate, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
  • Online:2024-03-20 Published:2024-03-29

Abstract: Diabetic retinopathy(DR)is a microvascular complication caused by diabetes mellitus and is the primary cause of blindness in patients. Its pathogenesis is influenced by various factors,such as immune inflammation, oxidative stress, and polyol pathways. Currently, immune-inflammatory responses are considered to play important roles in the development of DR. The Toll-like receptor 4(TLR4)/nuclear transcription factor-κB(NF-κB)pathway mediates the release of inflammatory factors and plays a key role in inflammatory mechanisms. Several studies have demonstrated that inhibition of the TLR4/NF-κB signaling pathway can effectively treat DR.This review addresses the role of TLR4/NF-κB channels in DR, which may provide novel treatment targets for this disease.

Key words: Diabetic retinopathy, Toll-like receptor 4, Nuclear factor kappa B, Microglia, Inflammation

CLC Number: 

  • R774.1
[1] Tan TE, Wong TY. Diabetic retinopathy: Looking forward to 2030[J]. Front Endocrinol(Lausanne), 2023,13: 1077669. doi:10.3389/fendo.2022.1077669
[2] Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021,128(11): 1580-1591. doi:10.1016/j.ophtha.2021.04.027
[3] Yue T, Shi Y, Luo S, et al. The role of inflammation in immune system of diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications[J]. Front Immunol, 2022, 13: 1055087. doi:10.3389/fimmu.2022.1055087
[4] Wallsh JO, Gallemore RP. Anti-VEGF-resistant retinal diseases: a review of the latest treatment options[J]. Cells, 2021,10(5): 1049. doi:10.3390/cells10051049
[5] Taurone S, Ralli M, Nebbioso M, et al. The role of inflammation in diabetic retinopathy: a review[J]. Eur Rev Med Pharmacol Sci, 2020, 24(20): 10319-10329. doi:10.26355/eurrev_202010_23379
[6] Cvitkovic K, Sesar A, Sesar I, et al. Concentrations of selected cytokines and vascular endothelial growth factor in aqueous humor and serum of diabetic patients[J]. Semin Ophthalmol, 2020, 35(2): 126-133. doi:10.1080/08820538.2020.1755320
[7] 王娇娇,李苗,宋宗明. 糖尿病视网膜病变的机制和细胞模型研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 93-99. doi:10.6040/j.issn.1673-3770.0.2021.203 WANG Jiaojiao, LI Miao, SONG Zongming. Progress in diabetic retinopathy mechanisms and cellular models[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 93-99. doi: 10.6040/j.issn.1673-3770.0.2021.203
[8] Shu X, Hu Y, Huang C, et al. Nimbolide ameliorates the streptozotocin-induced diabetic retinopathy in rats through the inhibition of TLR4/NF-κB signaling pathway[J]. Saudi J Biol Sci, 2021, 28(8): 4255-4262. doi:10.1016/j.sjbs.2021.06.039
[9] Dabi YT, Ajagbe AO, Degechisa ST. Toll-like receptors in pathogenesis of neurodegenerative diseases and their therapeutic potential[J]. Immun Inflamm Dis, 2023, 11(4): e839. doi:10.1002/iid3.839
[10] Balka KR, De Nardo D. Understanding early TLR signaling through the myddosome[J]. J Leukoc Biol, 2019, 105(2): 339-351. doi:10.1002/JLB.MR0318-096R
[11] Romerio A, Peri F. Increasing the chemical variety of small-molecule-based TLR4 modulators: an overview[J]. Front Immunol, 2020, 11: 1210. doi:10.3389/fimmu.2020.01210
[12] Wang L, Wang J, Fang JZ, et al. High glucose induces and activates Toll-like receptor 4 in endothelial cells of diabetic retinopathy[J]. Diabetol Metab Syndr, 2015, 7: 89. doi:10.1186/s13098-015-0086-4
[13] 李晓洁, 许泽鹏, 黄玉婷, 等. Toll样受体4信号通路在糖尿病视网膜病变中的研究进展[J]. 中国中医眼科杂志, 2023, 33(1): 73-79. doi:10.13444/j.cnki.zgzyykzz.2023.01.019 LI Xiaojie, XU Zepeng, HUANG Yuting, et al. Research progress of Toll-like receptor 4 signaling pathway in diabetic retinopathy[J]. China Journal of Chinese Ophthalmology, 2023, 33(1): 73-79. doi:10.13444/j.cnki.zgzyykzz.2023.01.019
[14] Jagtap P, Prasad P, Pateria A, et al. A single step in vitro bioassay mimicking TLR4-LPS pathway and the role of MD2 and CD14 coreceptors[J]. Front Immunol, 2020,11: 5. doi:10.3389/fimmu.2020.00005
[15] Bayer AL, Alcaide P. MyD88: At the heart of inflammatory signaling and cardiovascular disease[J]. J Mol Cell Cardiol, 2021,161: 75-85. doi:10.1016/j.yjmcc.2021.08.001
[16] Fitzgerald KA, Kagan JC. Toll-like receptors and the control of Immunity[J]. Cell, 2020,180(6): 1044-1066. doi:10.1016/j.cell.2020.02.041
[17] Bayan N, Yazdanpanah N, Rezaei N. Role of toll-like receptor 4 in diabetic retinopathy[J]. Pharmacol Res, 2022, 175: 105960. doi:10.1016/j.phrs.2021.105960
[18] Durand JK, Baldwin AS. Targeting IKK and NF-κB for therapy[J]. Adv Protein Chem Struct Biol, 2017, 107: 77-115. doi:10.1016/bs.apcsb.2016.11.006
[19] Zhang Y, Li H, Wang C, et al. Toll like receptor 4 gene Asp299Gly polymorphism increases the risk of diabetic microvascular complications: a meta analysis[J]. Diabetol Metab Syndr, 2022, 14(1): 79. doi:10.1186/s13098-022-00849-2
[20] Fu H, Liu H. Deletion of toll-like receptor 4 ameliorates diabetic retinopathy in mice[J]. Arch Physiol Biochem,2023, 129(2): 519-525. doi:10.1080/13813455.2020.1841795
[21] Chen H, Yan T, Song Z, et al. MD2 blockade prevents modified LDL-induced retinal injury in diabetes by suppressing NADPH oxidase-4 interaction with Toll-like receptor-4[J]. Exp Mol Med, 2021, 53(4): 681-694. doi:10.1038/s12276-021-00607-w
[22] Mesquida M, Drawnel F, Lait PJ, et al. Modelling macular edema: the effect of IL-6 and IL-6R blockade on human blood-retinal barrier integrity in vitro[J]. Transl Vis Sci Technol,2019, 8(5): 32. doi:10.1167/tvst.8.5.32
[23] Taghavi Y, Hassanshahi G, Kounis NG, et al. Monocyte chemoattractant protein-1(MCP-1/CCL2)in diabetic retinopathy: latest evidence and clinical considerations[J]. J Cell Commun Signal, 2019, 13(4): 451-462. doi: 10.1007/s12079-018-00500-8
[24] O'leary F, Campbell M. The blood-retina barrier in health and disease[J]. FEBS J, 2023, 290(4): 878-891. doi:10.1111/febs.16330
[25] Madore C, Yin ZR, Leibowitz J, et al. Microglia, lifestyle stress, and neurodegeneration[J]. Immunity, 2020, 52(2): 222-240. doi:10.1016/j.immuni.2019.12.003
[26] Mcmenamin PG, Saban DR, Dando S J. Immune cells in the retina and choroid: two different tissue environments that require different defenses and surveillance[J]. Prog Retin Eye Res, 2019, 70: 85-98. doi:10.1016/j.preteyeres.2018.12.002
[27] Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration[J]. Int J Mol Sci, 2018, 19(1): 110. doi:10.3390/ijms19010110
[28] Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states[J]. Br J Pharmacol, 2016, 173(4): 649-665. doi:10.1111/bph.13139
[29] Wang XL, Chen F, Shi H, et al. Oxymatrine inhibits neuroinflammation by regulating M1/M2 polarization in N9 microglia through the TLR4/NF-κB pathway[J]. Int Immunopharmacol, 2021, 100: 108139. doi:10.1016/j.intimp.2021.108139
[30] Fang MY, Wan WC, Li QM, et al. Asiatic acid attenuates diabetic retinopathy through TLR4/MyD88/NF-κB p65 mediated modulation of microglia polarization[J]. Life Sci, 2021, 277: 119567. doi:10.1016/j.lfs.2021.119567
[31] Gu C, Zhang HJ, Zhao SF, et al. Mesenchymal stem cell exosomal miR-146a mediates the regulation of the TLR4/MyD88/NF-κB signaling pathway in inflammation due to diabetic retinopathy[J]. Comput Math Methods Med, 2022: 3864863. doi:10.1155/2022/3864863
[32] Tang L, Zhang C, Lu L, et al. Melatonin maintains inner blood-retinal barrier by regulating microglia via inhibition of PI3K/Akt/Stat3/NF-κB signaling pathways in experimental diabetic retinopathy[J]. Front Immunol, 2022, 13: 831660. doi:10.3389/fimmu.2022.831660
[33] Jo DH, Yun JH, Cho CS, et al. Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in diabetic retinopathy[J]. Glia, 2019, 67(2): 321-331. doi:10.1002/glia.23542
[34] Yun JH, Park SW, Kim KJ, et al. Endothelial STAT3 activation increases vascular leakage through downregulating tight junction proteins: implications for diabetic retinopathy[J]. J Cell Physiol,2017, 232(5): 1123-1134. doi:10.1002/jcp.25575
[35] Arrigo A, Aragona E, Bandello F. VEGF-targeting drugs for the treatment of retinal neovascularization in diabetic retinopathy[J]. Ann Med, 2022, 54(1): 1089-1111. doi:10.1080/07853890.2022.2064541
[36] Friedman M, Azrad-lebovitz T, Morzaev D, et al. Protective effect of TLR4 ablation against corneal neovascularization following chemical burn in a mouse model[J]. Curr Eye Res,2019, 44(5): 505-513. doi:10.1080/02713683.2018.1564833
[37] Chen W, Zhang J, Zhang P, et al. Role of TLR4-MAP4K4 signaling pathway in models of oxygen-induced retinopathy[J]. FASEB J, 2019, 33(3): 3451-3464. doi:10.1096/fj.201801086RR
[38] Gao T, Lin Z, Jin X. Hydrocortisone suppression of the expression of VEGF may relate to toll-like receptor(TLR)2 and 4[J]. Curr Eye Res, 2009, 34(9): 777-784. doi:10.1080/02713680903067919
[39] Xue L, Hu M, Zhu Q, et al. GRg1 inhibits the TLR4/NF-kB signaling pathway by upregulating miR-216a-5p to reduce growth factors and inflammatory cytokines in DR[J]. Mol Biol Rep, 2023, 50(11): 9379-9394. doi:10.1007/s11033-023-08895-3
[40] Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy[J]. Front Immunol, 2020,11: 564077. doi:10.3389/fimmu.2020.564077
[41] Boeck M, Thien A, Wolf J, et al. Temporospatial distribution and transcriptional profile of retinal microglia in the oxygen-induced retinopathy mouse model[J]. Glia, 2020, 68(9): 1859-1873. doi:10.1002/glia.23810
[42] Soni D, Sagar P, Takkar B. Diabetic retinal neurodegeneration as a form of diabetic retinopathy[J]. Int Ophthalmol, 2021,41(9):3223-3248. doi:10.1007/s10792-021-01864-4
[43] Bikbova G, Oshitari T, Bikbov M. Diabetic neuropathy of the retina and inflammation: perspectives[J]. Int J Mol Sci, 2023, 24(11): 9166. doi:10.3390/ijms24119166
[44] Seidel A, Liu L, Jiang YD, et al. Loss of TLR4 in endothelial cells but not Müller cells protects the diabetic retina[J]. Exp Eye Res, 2021, 206: 108557. doi:10.1016/j.exer.2021.108557
[45] Park HY, Kim JH, Park CK. Neuronal cell death in the inner retina and the influence of vascular endothelial growth factor inhibition in a diabetic rat model[J]. Am J Pathol, 2014, 184(6): 1752-1762. doi:10.1016/j.ajpath.2014.02.016
[46] Ferreira de Melo IM, Martins Ferreira CG, Lima da Silva Souza EH, et al. Melatonin regulates the expression of inflammatory cytokines, VEGF and apoptosis in diabetic retinopathy in rats[J]. Chem Biol Interact, 2020, 327: 109183. doi:10.1016/j.cbi.2020.109183
[47] Araszkiewicz A, Zozulinska-Ziolkiewicz D. Retinal neurodegeneration in the course of diabetes-pathogenesis and clinical perspective[J]. Curr Neuropharmacol, 2016, 14(8): 805-809. doi:10.2174/1570159x14666160225154536
[48] Pereiro X, Ruzafa N, Acera A, et al. Dexamethasone protects retinal ganglion cells but not Müller glia against hyperglycemia in vitro[J]. PLoS One, 2018, 13(11): e0207913. doi:10.1371/journal.pone.0207913
[49] Zhao M, Li CH, Liu YL. Toll-like receptor(TLR)-2/4 expression in retinal ganglion cells in a high-glucose environment and its implications[J]. Genet Mol Res, 2016, 15(2): 10. doi:10.4238/gmr.15026998
[50] Nakano Y, Shimazawa M, Ojino K, et al. Toll-like receptor 4 inhibitor protects against retinal ganglion cell damage induced by optic nerve crush in mice[J]. J Pharmacol Sci. 2017, 133(3): 176-183. doi:10.1016/j.jphs.2017.02.012
[51] Liu L, Jiang YD, Steinle J. Epac1 regulates TLR4 signaling in the diabetic retinal vasculature[J]. Cytokine, 2021, 144: 155576. doi:10.1016/j.cyto.2021.155576
[1] HE Jing, LEI Chunyan, ZHANG Meixia. Association of glycosylated hemoglobin variation index with diabetic retinopathy severity [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(2): 34-40.
[2] YAN Huijuan, XIAO Xuping, ZHONG Yu. Expression and clinical significance of IL-29 and TLR4 in eosinophil infiltrated nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(2): 122-127.
[3] ZHU Han, LIU Xuexia, ZHANG Hua. Study on the role of autophagy in the pathogenesis of allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1): 79-86.
[4] YUAN Yuqi, CAO Zine, NIU Xiaoxin, XIE Yushan, SU Yonglong, ZHU Simin, ZHANG Yitong, LIU Haiqin, REN Xiaoyong, SHI Yewen. Clinical significance of peripheral blood inflammatory markers in obstructive sleep apnea hypopnea syndrome with hypertension [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 85-92.
[5] CUI Ning, WANG Yunmeng, YANG Jingpu. Research progress on the role and regulatory mechanism of group 2 innate lymphoid cells in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 153-159.
[6] WANG Weiyi, SHI Lei, ZHANG Zhiyu, ZHANG Guiling, SHI Guanggang. Effects of high fat diet on allergic rhinitis mice and intestinal flora [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 21-29.
[7] TANG Huixin, LI Jingjing, ZOU Hong. Mechanism and clinical applications of subthreshold diode micropulse laser [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 143-148.
[8] LI Cong, LI Ling, LIU Tingyan, CHEN Liang. Research progress on influencing factors of aminoglycoside antibiotic ototoxicity [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 128-134.
[9] LIU Tong, LIN Wei, FENG Meng, YANG Yi, LIU Tingting, ZHANG Min. Analysis of the effect of berberine on diabetic retinopathy in the immune microenvironment based on network pharmacology and experimental verification [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(1): 94-104.
[10] WANG Jiaojiao, LI MiaoOverview,SONG ZongmingGuidance. Progress in diabetic retinopathy mechanisms and cellular models [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 93-99.
[11] AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14.
[12] SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42.
[13] HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83.
[14] WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141.
[15] WANG Hui, WANG Jun, SUN Yi, YU Tengfei, ZHU Yuguang, ZHU Yan. Effect of intravitreal injection of HGF-MSCs on the expression of HGF in retina tissue of diabetic rats [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 72-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Changliang,HUANG Zhiwu,YAO Hangqi,ZHU Yong,SNU Yi . Study on auditory brainstem response[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 9 -13 .
[2] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 89 -89 .
[3] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 90 -91 .
[4] LIU Da-yu,PAN Xin-liang,LEI Da-peng,ZHANG Li-qiang,LUAN Xin-yong . Surgical treatment for medial wall pyriform sinus cancer[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(1): 8 -11 .
[5] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(2): 188 -188 .
[6] LIU Yan,LIU Xin-yi,WANG Jin-ping,LI Da-jian . Measurement of the posterior tympanum and its clinical significance [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 218 -221 .
[7] ZHAO Min,WANG Shou-sen,ZHEN Ze-nian,CHEN Xian-ming,WANG Mao-xin . Sphenoid sinus and trans-sphenoid surgery under nasal endoscopy and microscopy [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 244 -245 .
[8] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 252 -252 .
[9] WANG Hong-xia,WANG Peng-cheng . Expression of NSE,S100 and GFAP in retinoblastoma and its clinical significance[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 263 -264 .
[10] HUANG Fang,HUANG Hai-qiong,HUANG Jian-qiang,HE He-fan . Bronchoscopic video supervision system in infant bronchial foreign bodies[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 276 -277 .