Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2024, Vol. 38 ›› Issue (2): 34-40.doi: 10.6040/j.issn.1673-3770.0.2023.376

• Original Article • Previous Articles     Next Articles

Association of glycosylated hemoglobin variation index with diabetic retinopathy severity

HE Jing, LEI Chunyan, ZHANG Meixia   

  1. Department of Ophthalmology, West China School of Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan,  China
  • Online:2024-03-20 Published:2024-03-29

Abstract: Objective This study investigated the correlation between hemoglobin variation index(HGI)and the severity of retinopathy and macular edema in patients with type 2 diabetes mellitus(T2DM). Methods A total of 294 T2DM patients were enrolled. Based on the 2022 International Academy of Ophthalmology diagnostic criteria for diabetic retinopathy(DR), patients were classified into: proliferative DR(PDR), non-PDR(NPDR), and no microangiopathy(NC). DR severity was further categorized as mild NPDR, moderate NPDR, severe NPDR, and PDR. According to the international grading standards for diabetic macular edema(DME), patients were categorized as: central involved DME(CI-DME), non-central involved DME(NCI-DME), and no central involved DME(NDME). DME severity: NCI-DME <CI-DME. General clinical data were collected, and HGI differences between groups were analyzed. Results Patients with NPDR and PDR group had significantly higher HGI than those with NC. PDR patients had higher HGI than NPDR patients. Similarly, NCI-DME and CI-DME patients had significantly higher HGI than NDME patients, with CI-DME having the highest HGI. Univariate Logistic regression analysis revealed significant correlations between the presence of DR and T2DM, course of diabetes(P<0.01), body mass index(P=0.01), diastolic blood pressure(P=0.04), HGI(P=0.01), fasting plasma glucose(P=0.04), and HbA1c(P=0.01). Additionally, a significant correlation(P<0.001)was found between HGI and DR severity. Conclusion HGI is closely associated with the severity of both DR And DME in T2DM patients.

Key words: Glycated hemoglobin variation index, Diabetic retinopathy, Macular edema, Macular fovea thickness

CLC Number: 

  • R774.1
[1] Fenwick EK, Bansback N, Gan ATL, et al. Validation of a novel diabetic retinopathy utility index using discrete choice experiments[J]. Br J Ophthalmol, 2020, 104(2): 188-193. doi:10.1136/bjophthalmol-2019-313899
[2] Wang HY, Fang JW, Chen FG, et al. Metabolomic profile of diabetic retinopathy: a GC-TOFMS-based approach using vitreous and aqueous humor[J]. Acta Diabetol, 2020, 57(1): 41-51. doi:10.1007/s00592-019-01363-0
[3] López-Contreras AK, Martínez-Ruiz MG, Olvera-Montaño C, et al. Importance of the use of oxidative stress biomarkers and inflammatory profile in aqueous and vitreous humor in diabetic retinopathy[J]. Antioxidants, 2020, 9(9): 891. doi:10.3390/antiox9090891
[4] Hsia DS, Rasouli N, Pittas AG, et al. Implications of the hemoglobin glycation index on the diagnosis of prediabetes and diabetes[J]. J Clin Endocrinol Metab, 2020, 105(3): e130-e138. doi:10.1210/clinem/dgaa029
[5] Wang SB, Gu LF, Chen JW, et al. Association of hemoglobin glycation index and glycation gap with cardiovascular disease among US adults[J]. Diabetes Res Clin Pract, 2022, 190: 109990. doi:10.1016/j.diabres.2022.109990
[6] Wang ZW, Liu YH, Xie J, et al. Association between hemoglobin glycation index and subclinical myocardial injury in the general population free from cardiovascular disease[J]. Nutr Metab Cardiovasc Dis, 2022, 32(2): 469-478. doi:10.1016/j.numecd.2021.10.018
[7] Hempe JM, Hsia DS. Variation in the hemoglobin glycation index[J]. J Diabetes Complications, 2022, 36(7): 108223. doi:10.1016/j.jdiacomp.2022.108223
[8] Klein KR, Franek E, Marso S, et al. Hemoglobin glycation index, calculated from a single fasting glucose value, as a prediction tool for severe hypoglycemia and major adverse cardiovascular events in DEVOTE[J]. BMJ Open Diabetes Res Care, 2021, 9(2): e002339. doi:10.1136/bmjdrc-2021-002339
[9] Ibarra-Salce R, Pozos-Varela FJ, Martinez-Zavala N, et al. Correlation between hemoglobin glycation index measured by continuous glucose monitoring with complications in type 1 diabetes[J]. Endocr Pract, 2023, 29(3): 162-167. doi:10.1016/j.eprac.2023.01.001[PubMed]
[10] 陈晓正, 李珍梅, 林慧卿, 等. 糖化血红蛋白变异指数与糖尿病视网膜病变的相关性研究[J]. 中国糖尿病杂志, 2018, 26(3): 188-192. doi:10.3969/j.issn.1006-6187.2018.03.002 CHEN Xiaozheng, LI Zhenmei, LIN Huiqing, et al. Relationship between glycated hemoglobin variability index and risk of diabetic retinopathy in patients with type 2 diabetes[J]. Chinese Journal of Diabetes, 2018, 26(3): 188-192. doi:10.3969/j.issn.1006-6187.2018.03.002
[11] Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591. doi:10.1016/j.ophtha.2021.04.027
[12] 唐婷, 赵勋, 李金萍. 糖尿病性视网膜病变患者空腹血糖、糖化血红蛋白及血清C肽水平与眼底病变严重程度的相关性分析[J]. 糖尿病新世界, 2023, 26(9): 173-177. doi:10.16658/j.cnki.1672-4062.2023.09.173 TANG Ting, ZHAO Xun, LI Jinping. Correlation analysis of fasting blood glucose, glycosylated hemoglobin and serum C-peptide levels with the severity of fundus lesions in patients with diabetic retinopathy[J]. Diabetes New World, 2023, 26(9): 173-177. doi:10.16658/j.cnki.1672-4062.2023.09.173
[13] Li PP, Zhang P, Guan DW, et al. Changes in racial and ethnic disparities in glucose-lowering drug utilization and glycated haemoglobin A1c in US adults with diabetes: 2005-2018[J]. Diabetes Obes Metab, 2023, 25(2): 516-525. doi:10.1111/dom.14894
[14] Xie SS, Luo XT, Dong MH, et al. Association between hemoglobin glycation index and metabolic syndrome in middle-aged and older people[J]. Diabetes Metab Syndr Obes, 2023, 16: 1471-1479. doi:10.2147/DMSO.S406660
[15] 胡佳琪, 周倩倩, 徐慧君, 等. HbA1c变异性对糖尿病视网膜病变的影响及其截断值的判定[J]. 眼科新进展, 2020, 40(10): 967-971. doi:10.13389/j.cnki.rao.2020.0217 HU Jiaqi, ZHOU Qianqian, XU Huijun, et al. Effect of HbA1c variability on diabetic retinopathy and its cut-off value for early diabetic retinopathy diagnosis[J]. Recent Advances in Ophthalmology, 2020, 40(10): 967-971. doi:10.13389/j.cnki.rao.2020.0217
[16] Sanz-González SM, García-Medina JJ, Zanón-Moreno V, et al. Clinical and molecular-genetic insights into the role of oxidative stress in diabetic retinopathy: antioxidant strategies and future avenues[J]. Antioxidants, 2020, 9(11): 1101. doi:10.3390/antiox9111101
[17] Hsueh YJ, Chen YN, Tsao YT, et al. The pathomechanism, antioxidant biomarkers, and treatment of oxidative stress-related eye diseases[J]. Int J Mol Sci, 2022, 23(3): 1255. doi:10.3390/ijms23031255
[18] Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes[J]. J Inflamm Res, 2020, 13: 1057-1073. doi:10.2147/JIR.S275595
[19] Li M, Tian MM, Wang YL, et al. Updates on RPE cell damage in diabetic retinopathy(Review)[J]. Mol Med Rep, 2023, 28(4): 185. doi:10.3892/mmr.2023.13072
[20] Tabatabaei-Malazy O, Peimani M, Mohseni S, et al. Therapeutic effects of dietary antioxidative supplements on the management of type 2 diabetes and its complications; umbrella review of observational/trials meta-analysis studies[J]. J Diabetes Metab Disord, 2022, 21(2): 1833-1859. doi:10.1007/s40200-022-01069-1
[21] Yang J, Liu ZS. Mechanistic pathogenesis of endothelial dysfunction in diabetic nephropathy and retinopathy[J]. Front Endocrinol, 2022, 13: 816400. doi:10.3389/fendo.2022.816400
[22] 王娇娇, 李苗, 宋宗明. 糖尿病视网膜病变的机制和细胞模型研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 93-99. doi: 10.6040/j.issn.1673-3770.0.2021.203 WANG Jiaojiao, LI Miao, SONG Zongming. Progress in diabetic retinopathy mechanisms and cellular models[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 93-99. doi: 10.6040/j.issn.1673-3770.0.2021.203
[23] Yumnamcha T, Guerra M, Singh LP, et al. Metabolic dysregulation and neurovascular dysfunction in diabetic retinopathy[J]. Antioxidants, 2020, 9(12): 1244. doi:10.3390/antiox9121244
[24] Cao X, Xue LD, Di Y, et al. MSC-derived exosomal lncRNA SNHG7 suppresses endothelial-mesenchymal transition and tube formation in diabetic retinopathy via miR-34a-5p/XBP1 axis[J]. Life Sci, 2021, 272: 119232. doi:10.1016/j.lfs.2021.119232
[25] Wang E, Feng B, Chakrabarti S. MicroRNA 9 is a regulator of endothelial to mesenchymal transition in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2023, 64(7): 13. doi:10.1167/iovs.64.7.13
[1] ZHOU Jinglin, LI Jinxiang, ZENG Qi. Effect of 577 nm subthreshold micropulse laser photocoagulation combined with anti-VEGF on the treatment of refractory diabetic macular edema [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(2): 18-25.
[2] LUN Yingjun, CHEN Chen, GAO Hongcheng, FAN Qinglin, TAI Renqing. Role of Toll-like receptor 4/nuclear transcription factor-κB channels in diabetic retinopathy [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(2): 163-168.
[3] TANG Huixin, LI Jingjing, ZOU Hong. Mechanism and clinical applications of subthreshold diode micropulse laser [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 143-148.
[4] LIU Tong, LIN Wei, FENG Meng, YANG Yi, LIU Tingting, ZHANG Min. Analysis of the effect of berberine on diabetic retinopathy in the immune microenvironment based on network pharmacology and experimental verification [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(1): 94-104.
[5] GU Ranran, LI Fengjiao, JIAO Wanzhen, CUI Yanyan, ZHAO Bojun. Clinical efficacy of lecithin complex iodine capsule in the adjuvant treatment of retinal vein occlusion [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 46-50.
[6] WANG Jiaojiao, LI MiaoOverview,SONG ZongmingGuidance. Progress in diabetic retinopathy mechanisms and cellular models [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 93-99.
[7] WANG Hui, WANG Jun, SUN Yi, YU Tengfei, ZHU Yuguang, ZHU Yan. Effect of intravitreal injection of HGF-MSCs on the expression of HGF in retina tissue of diabetic rats [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 72-77.
[8] LIU Zhigao, WANG Shuya, HAN Xuguang, WANG Yu, LI Zhiwei, MA Aihua, ZHAO Bojun. Preoperative timing and the effect of intravitreal aflibercept injection for proliferative diabetic retinopathy patients [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(1): 99-103.
[9] Keyang HAN,Beibei YU,Bojun ZHAO. Morphological structure analysis of the macular area after anti-VEGF treatment for short-term retinal vein occlusion [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(5): 129-131.
[10] LIU Jianbo, ZHANG Huan. Phacoemulsification combined with intravitreal ranibizumab or triamcinolone acetonide injection for the treatment of cataract accompanied by diabetic macular edema [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 99-104.
[11] LI Baohua, LIU Ping, WANG Xin. Effect of beta elemene on the expression of IL-1 beta and ICAM-1 in the retina of diabetic rats [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 111-114.
[12] WANG Xinjuan, SHA Shike, MA Lusheng. A case of transient monocular visual loss after vitrectomy for diabetic retinopathy [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 171-172.
[13] LIU Wanzhi, CHEN Jun, FAN Changchun. Clinical study of conbercept in the treatment of proliferative diabetic retinopathy [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(6): 88-91.
[14] ZHOU Xueyi, LI Yiming, WANG Meiju, ZHANG Yuanyuan, ZHANG Lizhuo. The application of 25-gauge minimally invasive vitreoretinal surgery combined with intravitreal ranibizumab injections in the treatment of proliferative diabetic retinopathy. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 87-89.
[15] . Effects of PGMS on the expression of vascular endothelial growth factor in the rat of diabetic retinopathy. [J]. J Otolaryngol Ophthalmol Shandong Univ, 2017, 31(2): 90-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 84 -87 .
[2] NIU Shanli,CHAI Maowen,LI Zhenxiu . Endoscopic rhinoplasty of inferior turbinate in 60 patients with chronic hypertrophic rhinitis[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 16 -18 .
[3] MENG Qing-guo,LU Yong-tian,FAN Xian-liang .

Association of killer cell immunoglobulin-like receptor gene polymorphisms with nasopharyngeal carcinoma

[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 196 -199 .
[4] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 199 -199 .
[5] WAN Li-jia,LU Hai-tao,JIANG Yi-dao,LIU Hui,LI Qin,SHE La-zhi . Effect of H-uvulopalatopharyngoplasty on obstructive sleep apnea
hypopnea syndrome
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 204 -205 .
[6] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 222 -224 .
[7] JI Xiao-bin,DENG Jia-de,ZANG Lin-quan,WANG Lei,XIE Jun . Blood histamine in guinea pigs with allergic rhinitis[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 228 -230 .
[8] XIANG Deng,LU Yong-tian,SUN Huan-ji . Endoscopic repair for cerebrospinal fluid rhinorrhea in 19 cases and a literature review [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 234 -236 .
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 253 -257 .
[10]
YIN Guo-hua,ZHONG Xiao . Long-term effect of laser reduction on lingua adenoids
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 280 -282 .