Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (3): 21-29.doi: 10.6040/j.issn.1673-3770.0.2022.137

• 论著 • Previous Articles    

Effects of high fat diet on allergic rhinitis mice and intestinal flora

WANG Weiyi, SHI Lei, ZHANG Zhiyu, ZHANG Guiling, SHI Guanggang   

  1. Department of Otorhinolaryngology & Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong, China
  • Published:2023-05-24

Abstract: Objective We investigated the effect of high-fat diet(HFD)on the sensitization of allergic rhinitis(AR)mice and change of intestinal flora and its regulatory mechanism. Methods The control(CN), allergic rhinitis model(AR)induced by chicken ovalbumin(OVA), and allergic rhinitis model(HFD-AR)groups exposed to high-fat diet were set up, with seven mice in each group. The times of sneezing and scratching the nose of each mouse were recorded, and the concentration of anti OVA IgE in serum and IL-4 in nasal lavatory were detected by ELISA. The nasal mucosa and lung were sectioned and stained with HE. Additionally, the total DNA of stool samples was extracted to determine the purity and integrity of the genome for 16S rRNA sequencing and data analysis. Results The frequency of nose scratching and sneezing in the AR group was higher than that in the CN group after OVA stimulation. Compared with the AR group, the HFD-AR group exhibited increased nose scratching and sneezing in mice. Compared with the CN group, the level of specific IgE against OVA in serum and the level of IL-4 in the nasal lavage fluid of mice in the HFD-AR and AR groups increased. HFD intervention aggravated eosinophil infiltration in nasal mucosa and inflammatory cell infiltration in lung tissue of AR group mice. The diversity and number of flora in the HFD-AR group were lower than those in the AR group. The intestinal microflora structure of mice in the CN, AR, and HFD-AR groups were isolated, while the sample isolation in the group was small. At the phyla and genus levels, numerous different bacterial populations were observed among the three groups of mice. Conclusion The intervention of high-fat diet aggravates the symptoms and inflammatory infiltration of tissues in OVA-induced AR mice and reduces the diversity and abundance of intestinal flora. The nasal inflammation of mice aggravated by high-fat diet is related to intestinal flora imbalance.

Key words: Allergic rhinitis, High fat diet, Intestinal flora, Inflammation

CLC Number: 

  • R765
[1] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(2): 81-100. doi:10.3760/cma.j.issn.1673-0860.2019.02.001 Subspecialty Group of Rhinology, Editorial Board of Chinese Journal of Otorhinolaryngology Head and Neck Surgery, Subspecialty Group of Rhinology, et al. Chinese guidelines for diagnosis and treatment of chronic rhinosinusitis(2018)[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2019, 54(2): 81-100. doi:10.3760/cma.j.issn.1673-0860.2019.02.001
[2] Hertzen Leena-von,Hanski Ilkka,Haahtela Tari, et al. Biodiversity loss and inflammatory diseases are two global megatrends that might be related[J]. Natural immunity, 2011(11): 1089-1093. doi:10.1038/embor.2011.195
[3] Neef A, Sanz Y. Future for probiotic science in functional food and dietary supplement development[J]. Curr Opin Clin Nutr Metab Care, 2013, 16(6): 679-687. doi:10.1097/MCO.0b013e328365c258
[4] Leavy O. The good the gut bugs do[J]. Nat Rev Immunol, 2012, 12(5): 319. doi:10.1038/nri3213
[5] Rentier C, Pacini G, Nuti F, et al. Synthesis of diastereomerically pure Lys(N ε-lipoyl)building blocks and their use in Fmoc/tBu solid phase synthesis of lipoyl-containing peptides for diagnosis of primary biliary cirrhosis[J]. J Pept Sci, 2015, 21(5): 408-414. doi:10.1002/psc.2761
[6] Flores A, Mayo MJ. Primary biliary cirrhosis in 2014[J].Curr Opin Gastroenterol, 2014,30(3):245-252. doi:10.1097/MOG.0000000000000058
[7] Wang LF, Sun Y, Zhang Z, et al. CXCR5+ CD4+ T follicular helper cells participate in the pathogenesis of primary biliary cirrhosis[J]. Hepatology, 2015, 61(2): 627-638. doi:10.1002/hep.27306
[8] Takahashi T, Miura T, Nakamura J, et al. Plasma cells and the chronic nonsuppurative destructive cholangitis of primary biliary cirrhosis[J]. Hepatology, 2012, 55(3): 846-855. doi:10.1002/hep.24757
[9] Zimmermann P, Messina N, Mohn WW, et al. Association between the intestinal microbiota and allergic sensitization, eczema, and asthma: a systematic review[J]. J Allergy Clin Immunol, 2019, 143(2): 467-485. doi:10.1016/j.jaci.2018.09.025
[10] Zou QY, Hong SL, Kang HY, et al. Effect of di-(2-ethylhexyl)phthalate(DEHP)on allergic rhinitis[J]. Sci Rep, 2020, 10(1): 14625. doi:10.1038/s41598-020-71517-6
[11] Le Lay S, Boucher J, Rey A, et al. Decreased resistin expression in mice with different sensitivities to a high-fat diet[J]. Biochem Biophys Res Commun, 2001, 289(2): 564-567. doi:10.1006/bbrc.2001.6015
[12] Liu CS, Zhao DF, Ma WJ, et al. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp[J]. Appl Microbiol Biotechnol, 2016, 100(3): 1421-1426. doi:10.1007/s00253-015-7039-6
[13] Chen SF, Zhou YQ, Chen YR, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890. doi:10.1093/bioinformatics/bty560
[14] Mago c T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963. doi:10.1093/bioinformatics/btr507
[15] Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10): 996-998. doi:10.1038/nmeth.2604
[16] Wang Q, Garrity GM, Tiedje JM, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Appl Environ Microbiol, 2007, 73(16): 5261-5267. doi:10.1128/AEM.00062-07
[17] Douglas GM, Maffei VJ, Zaneveld JR, et al. PICRUSt2 for prediction of metagenome functions[J]. Nat Biotechnol, 2020, 38(6): 685-688. doi:10.1038/s41587-020-0548-6
[18] Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Appl Environ Microbiol, 2009, 75(23): 7537-7541. doi:10.1128/AEM.01541-09
[19] Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biol, 2011, 12(6): R60. doi:10.1186/gb-2011-12-6-r60
[20] Long HY. Esculetin attenuates Th2 and Th17 responses in an ovalbumin-induced asthmatic mouse model[J]. Inflammation, 2016, 39(2): 735-743. doi:10.1007/s10753-015-0300-4
[21] Walters SN, Webster KE, Daley S, et al. A role for intrathymic B cells in the generation of natural regulatory T cells[J]. J Immunol, 2014, 193(1): 170-176. doi:10.4049/jimmunol.1302519
[22] Bárcena C, Valdés-Mas R, Mayoral P, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice[J]. Nat Med, 2019, 25(8): 1234-1242. doi:10.1038/s41591-019-0504-5
[23] Guan WJ, Yuan JJ, Li HM, et al. Proteobacteria community compositions correlate with bronchiectasis severity[J]. Int J Tuberc Lung Dis, 2018, 22(9): 1095-1105. doi:10.5588/ijtld.18.0037
[24] Mainz RE, Albers S, Haque M, et al. NLRP6 inflammasome modulates disease progression in a chronic-plus-binge mouse model of alcoholic liver disease[J]. Cells, 2022, 11(2): 182. doi:10.3390/cells11020182
[25] 林小燕, 李静, 马志祺, 等. 益生菌治疗变应性鼻炎的临床疗效及抗变态反应作用Meta分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 70-80. doi:10.6040/j.issn.1673-3770.0.2020.374 LIN Xiaoyan, LI Jing, MA Zhiqi, et al. Therapeutic and anti-allergic effects of probiotics on allergic rhinitis: a meta-analysis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(3): 70-80. doi:10.6040/j.issn.1673-3770.0.2020.374
[26] Netto Candido TL, Bressan J, Alfenas RCG. Dysbiosis and metabolic endotoxemia induced by high-fat diet[J]. Nutr Hosp, 2018, 35(6): 1432-1440. doi: 10.20960/nh.1792
[27] Kim KA, Gu W, Lee IA, et al. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway[J]. PLoS One, 2012, 7(10): e47713. doi:10.1371/journal.pone.0047713
[28] Devkota S, Wang YW, Musch MW, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in IL-10-/ - mice[J]. Nature, 2012, 487(7405): 104-108. doi:10.1038/nature11225
[29] Caesar R, Tremaroli V, Kovatcheva-Datchary P, et al. Crosstalk between gut Microbiota and dietary lipids aggravates WAT inflammation through TLR signaling[J]. Cell Metab, 2015, 22(4): 658-668. doi:10.1016/j.cmet.2015.07.026
[30] Wang RQ, Yang XY, Liu JT, et al. Gut microbiota regulates acute myeloid leukaemia via alteration of intestinal barrier function mediated by butyrate[J]. Nat Commun, 2022, 13(1): 2522. doi:10.1038/s41467-022-30240-8
[31] Koeth RA, Lam-Galvez BR, Kirsop J, et al. L-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans[J]. J Clin Invest, 2019, 129(1): 373-387. doi:10.1172/JCI94601
[32] Koeth RA, Wang ZN, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med, 2013, 19(5): 576-585. doi:10.1038/nm.3145
[33] Janeiro MH, Ramírez MJ, Milagro FI, et al. Implication of trimethylamine N-oxide(TMAO)in disease: potential biomarker or new therapeutic target[J]. Nutrients, 2018, 10(10): E1398. doi:10.3390/nu10101398
[34] Chen K, Zheng XQ, Feng MC, et al. Gut Microbiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice[J]. Front Physiol, 2017, 8: 139. doi:10.3389/fphys.2017.00139
[35] Rohrmann S, Linseisen J, Allenspach M, et al. Plasma concentrations of trimethylamine-N-oxide are directly associated with dairy food consumption and low-grade inflammation in a German adult population[J]. J Nutr, 2016, 146(2): 283-289. doi:10.3945/jn.115.220103
[1] LI Cong, LI Ling, LIU Tingyan, CHEN Liang. Research progress on influencing factors of aminoglycoside antibiotic ototoxicity [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 128-134.
[2] AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14.
[3] SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42.
[4] HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83.
[5] NI Jingzi, WAN Wenjin,CHENG Lei. Research progress on health-related quality of life in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 110-115.
[6] LIN Yihang,LI Youjin. Research progress on gut microbiome in children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 116-122.
[7] LIU Zhen,SONG Xicheng. Mechanisms and research progress of pyroptosis in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 123-129.
[8] WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141.
[9] LIU Yitong, ZHOU Suizi,QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146.
[10] GONG Xiaoyang, CHENG Lei. Analysis of proportion of outpatients with allergic rhinitis during the coronavirus infectious disease 2019 pandemic [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 245-255.
[11] ZHANG Yaqi, LIU Huimin, CAO Linman, WANG Ziyu, LIN Xu, LI Yanping, XUE Gang, WU Jingfang. Expression and significance of the MAPK,PI3K-AKT,NF-κB pathways of allergic rhinitis in mice [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 254-259.
[12] LU Weili, JIANG Tao, LI Xianhua. Analysis of sIgE in polysensitized children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 260-265.
[13] HUANG Kaiyue, LI Xueqing, HAN Gouxin, ZHANG Qinxiu. Meta-analysis of acupoint catgut embedding in the treatment of allergic rhinitis based on the theory of “lung and spleen” [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 266-274.
[14] ZHU Zhengru, ZHANG Xiaobing. Meta-analysis of the curative effect of traditional Chinese medicine decoction combined with conventional western medicine on allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 281-289.
[15] DI Yu,LI Ying. Research progress in the inflammatory reaction and anti-inflammatory treatments in dry eye [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 144-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!