Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (5): 118-124.doi: 10.6040/j.issn.1673-3770.0.2024.364
• Review • Previous Articles
HU Nan1, HUANG Yunye2, LIU Jing3, XU Zhibin4
CLC Number:
| [1] Chadha S, Kamenov K, Cieza A. The world report on hearing, 2021[J]. Bull World Health Organ, 2021, 99(4): 242-242A. doi:10.2471/BLT.21.285643 [2] Global costs of unaddressed hearing loss and cost-effectiveness of interventions[R].Geneva:World Health Organization,2017.http://apps.who.int/iris/bitstream/10665/254659/1/9789241512046-eng.pdf?ua=1[cited 2020 Nov 26] [3] 曲伸, 林紫薇. 中国肥胖症临床研究与实践的现状及展望[J]. 中华内分泌代谢杂志, 2023, 39(11): 909-916. doi:10.3760/cma.j.cn311282-20230403-00149 QU Shen, LIN Ziwei. Current status and outlook of clinical research and practice on obesity in China[J]. Chinese Journal of Endocrinology and Metabolism, 2023, 39(11): 909-916. doi:10.3760/cma.j.cn311282-20230403-00149 [4] Croll PH, Voortman T, Vernooij MW, et al. The association between obesity, diet quality and hearing loss in older adults[J]. Aging, 2019, 11(1): 48-62. doi:10.18632/aging.101717 [5] Hu HH, Tomita K, Kuwahara K, et al. Obesity and risk of hearing loss: a prospective cohort study[J]. Clin Nutr, 2020, 39(3): 870-875. doi:10.1016/j.clnu.2019.03.020 [6] Scinicariello F, Carroll Y, Eichwald J, et al. Association of obesity with hearing impairment in adolescents[J]. Sci Rep, 2019, 9(1): 1877. doi:10.1038/s41598-018-37739-5 [7] Yang JR, Hidayat K, Chen CL, et al. Body mass index, waist circumference, and risk of hearing loss: a meta-analysis and systematic review of observational study[J]. Environ Health Prev Med, 2020, 25(1): 25. doi:10.1186/s12199-020-00862-9 [8] Tavanai E, Rahimi V, Khalili ME, et al. Age-related hearing loss: an updated and comprehensive review of the interventions[J]. Iran J Basic Med Sci, 2024, 27(3): 256-269. doi:10.22038/IJBMS.2023.72863.15849 [9] Lee YY, Ha J, Kim YS, et al. Abnormal cholesterol metabolism and lysosomal dysfunction induce age-related hearing loss by inhibiting mTORC1-TFEB-dependent autophagy[J]. Int J Mol Sci, 2023, 24(24): 17513. doi:10.3390/ijms242417513 [10] Gopinath B, Sue CM, Flood VM, et al. Dietary intakes of fats, fish and nuts and olfactory impairment in older adults[J]. Br J Nutr, 2015, 114(2): 240-247. doi:10.1017/S0007114515001257 [11] Gopinath B, Flood VM, Teber E, et al. Dietary intake of cholesterol is positively associated and use of cholesterol-lowering medication is negatively associated with prevalent age-related hearing loss[J]. J Nutr, 2011, 141(7): 1355-1361. doi:10.3945/jn.111.138610 [12] Kociszewska D, Chan J, Thorne PR, et al. The link between gut dysbiosis caused by a high-fat diet and hearing loss[J]. Int J Mol Sci, 2021, 22(24): 13177. doi:10.3390/ijms222413177 [13] 杨靖源, 蒙俊, 杨堃. 肠紧密连接蛋白与肠道屏障功能[J]. 医学综述, 2022, 28(2): 235-239. doi:10.3969/j.issn.1006-2084.2022.02.005 YANG Jingyuan, MENG Jun, YANG Kun. Intestinal tight junction protein and intestinal barrier function[J]. Medical Recapitulate, 2022, 28(2): 235-239. doi:10.3969/j.issn.1006-2084.2022.02.005 [14] 王安洋, 李超友, 薛刚, 等. 肠道菌群与甲状腺疾病的关系[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 132-139. doi:10.6040/j.issn.1673-3770.0.2021.482 WANG Anyang, LI Chaoyou, XUE Gang, et al. Relationship between intestinal flora and thyroid diseases[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(1): 132-139. doi:10.6040/j.issn.1673-3770.0.2021.482 [15] Caminero A, Pinto-Sanchez MI. Host immune interactions in chronic inflammatory gastrointestinal conditions[J]. Curr Opin Gastroenterol, 2020, 36(6): 479-484. doi:10.1097/MOG.0000000000000673 [16] Li DF, Yang MF, Xu J, et al. Extracellular vesicles: the next generation theranostic nanomedicine for inflammatory bowel disease[J]. Int J Nanomedicine, 2022, 17: 3893-3911. doi:10.2147/IJN.S370784 [17] Van K, Burns JL, Monk JM. Effect of short-chain fatty acids on inflammatory and metabolic function in an obese skeletal muscle cell culture model[J]. Nutrients, 2024, 16(4): 500. doi:10.3390/nu16040500 [18] Bach Knudsen KE,Lærke HN, Hedemann MS, et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation[J]. Nutrients, 2018, 10(10): 1499. doi:10.3390/nu10101499 [19] Ferrer-Picón E, Dotti I, Corraliza AM, et al. Intestinal inflammation modulates the epithelial response to butyrate in patients with inflammatory bowel disease[J]. Inflamm Bowel Dis, 2020, 26(1): 43-55. doi:10.1093/ibd/izz119 [20] Silva JPB, Navegantes-Lima KC, Oliveira ALB, et al. Protective mechanisms of butyrate on inflammatory bowel disease[J]. Curr Pharm Des, 2018, 24(35): 4154-4166. doi:10.2174/1381612824666181001153605 [21] Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice[J]. Sci Transl Med, 2009, 1(6): 6ra14. doi:10.1126/scitranslmed.3000322 [22] Poritz LS, Garver KI, Green C, et al. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis[J]. J Surg Res, 2007, 140(1): 12-19. doi:10.1016/j.jss.2006.07.050 [23] Yin C, Zhong RQ, Zhang WD, et al. The potential of bile acids as biomarkers for metabolic disorders[J]. Int J Mol Sci, 2023, 24(15): 12123. doi:10.3390/ijms241512123 [24] Stenman LK, Holma R, Korpela R. High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids[J]. World J Gastroenterol, 2012, 18(9): 923-929. doi:10.3748/wjg.v18.i9.923 [25] Rohr MW, Narasimhulu CA, Rudeski-Rohr TA, et al. Negative effects of a high-fat diet on intestinal permeability: a review[J]. Adv Nutr, 2020, 11(1): 77-91. doi:10.1093/advances/nmz061 [26] Cao ST, Zhang QH, Wang CC, et al. LPS challenge increased intestinal permeability, disrupted mitochondrial function and triggered mitophagy of piglets[J]. Innate Immun, 2018, 24(4): 221-230. doi:10.1177/1753425918769372 [27] Stephens M, von der Weid PY. Lipopolysaccharides modulate intestinal epithelial permeability and inflammation in a species-specific manner[J]. Gut Microbes, 2020, 11(3): 421-432. doi:10.1080/19490976.2019.1629235 [28] Tomassen MMM, Govers C, Vos AP, et al. Dietary fat induced chylomicron-mediated LPS translocation in a bicameral Caco-2cell model[J]. Lipids Health Dis, 2023, 22(1): 4. doi:10.1186/s12944-022-01754-3 [29] Long-Smith C, O’Riordan KJ, Clarke G, et al. Microbiota-gut-brain axis: new therapeutic opportunities[J]. Annu Rev Pharmacol Toxicol, 2020, 60: 477-502. doi:10.1146/annurev-pharmtox-010919-023628 [30] Wang X, Pan L, Gu JY, et al. Associations between gut microbiota and alcohol abuse: a Mendelian randomisation and bioinformatics study[J]. J Mol Neurosci, 2024, 74(3): 80. doi:10.1007/s12031-024-02259-7 [31] Wang YX, Nie JY, Yan KG, et al. Inflammatory diet, gut microbiota and sensorineural hearing loss: a cross-sectional and Mendelian randomization study[J]. Front Nutr, 2024, 11: 1458484. doi:10.3389/fnut.2024.1458484 [32] Xie YY, Fang C, Lu LH, et al. Extract of Tinospora sinensis alleviates LPS-induced neuroinflammation in mice by regulating TLR4/NF-κB/NLRP3 signaling pathway[J]. J Ethnopharmacol, 2024, 337(Pt 1): 118807. doi:10.1016/j.jep.2024.118807 [33] Shi XR. Pathophysiology of the cochlear intrastrial fluid-blood barrier(review)[J]. Hear Res, 2016, 338: 52-63. doi:10.1016/j.heares.2016.01.010 [34] Mammano F. Inner ear connexin channels: roles in development and maintenance of cochlear function[J]. Cold Spring Harb Perspect Med, 2019, 9(7): a033233. doi:10.1101/cshperspect.a033233 [35] Semyachkina-Glushkovskaya O, Esmat A, Bragin D, et al. Phenomenon of music-induced opening of the blood-brain barrier in healthy mice[J]. Proc Biol Sci, 2020, 287(1941): 20202337. doi:10.1098/rspb.2020.2337 [36] Ito T, Kurata N, Fukunaga Y. Tissue-resident macrophages in the stria vascularis[J]. Front Neurol, 2022, 13: 818395. doi:10.3389/fneur.2022.818395 [37] Gupta S, Curhan SG, Curhan GC. Biomarkers of systemic inflammation and risk of incident hearing loss[J]. Ear Hear, 2019, 40(4): 981-989. doi:10.1097/AUD.0000000000000678 [38] Lassale C, Vullo P, Cadar D, et al. Association of inflammatory markers with hearing impairment: the English Longitudinal Study of Ageing[J]. Brain Behav Immun, 2020, 83: 112-119. doi:10.1016/j.bbi.2019.09.020 [39] Denton AJ, Godur DA, Mittal J, et al. Recent advancements in understanding the gut microbiome and the inner ear axis[J]. Otolaryngol Clin North Am, 2022, 55(5): 1125-1137. doi:10.1016/j.otc.2022.07.002 [40] Hwang JH, Wu CC, Hsu CJ, et al. Association of central obesity with the severity and audiometric configurations of age-related hearing impairment[J]. Obesity, 2009, 17(9): 1796-1801. doi:10.1038/oby.2009.66 [41] Kociszewska D, Vlajkovic SM. The association of inflammatory gut diseases with neuroinflammatory and auditory disorders[J]. Front Biosci(Elite Ed), 2022, 14(2): 8. doi:10.31083/j.fbe1402008 [42] Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases[J]. Immune Netw, 2018, 18(4): e27. doi:10.4110/in.2018.18.e27 [43] Hu BH, Zhang CL, Frye MD. Immune cells and non-immune cells with immune function in mammalian cochleae[J]. Hear Res, 2018, 362: 14-24. doi:10.1016/j.heares.2017.12.009 [44] Wang XL, Gu JY, Xu K, et al. Sound conditioning strategy promoting paracellular permeability of the blood-labyrinth-barrier benefits inner ear drug delivery[J]. Bioeng Transl Med, 2024, 9(1): e10596. doi:10.1002/btm2.10596 [45] Jiang H, Wang XH, Zhang JH, et al. Microvascular networks in the area of the auditory peripheral nervous system[J]. Hear Res, 2019, 371: 105-116. doi:10.1016/j.heares.2018.11.012 [46] Dhukhwa A, Bhatta P, Sheth S, et al. Targeting inflammatory processes mediated by TRPVI and TNF-α for treating noise-induced hearing loss[J]. Front Cell Neurosci, 2019, 13: 444. doi:10.3389/fncel.2019.00444 [47] Kang K, Chen SH, Wang DP, et al. Inhibition of endoplasmic reticulum stress improves chronic ischemic hippocampal damage associated with suppression of IRE1α/TRAF2/ASK1/JNK-dependent apoptosis[J]. Inflammation, 2024, 47(4): 1479-1490. doi:10.1007/s10753-024-01989-5 [48] CHAN J. The Gut Inner Ear Axis: on the road to discovery[D]. Auckland: University of Auckland, 2021 [49] Hwang JH, Hsu CJ, Yu WH, et al. Diet-induced obesity exacerbates auditory degeneration via hypoxia, inflammation, and apoptosis signaling pathways in CD/1 mice[J]. PLoS One, 2013, 8(4): e60730. doi:10.1371/journal.pone.0060730 [50] Han Q, Yeung SC, Ip MSM, et al. Dysregulation of cardiac lipid parameters in high-fat high-cholesterol diet-induced rat model[J]. Lipids Health Dis, 2018, 17(1): 255. doi:10.1186/s12944-018-0905-3 |
| [1] | DOU Tao, DOU Naixin, WANG Ru, YANG Qian, GUAN Qingbo, WANG Lei, YU Chunxiao. Bioinformatic analysis of miRNA-mRNA network involved in thyroid function impairment by high-fat diet [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(4): 151-160. |
| [2] | GUO Ruixiang, WANG Yan. Recent advances in research on the association between intestinal flora and obstructive sleep apnea-related cognitive impairment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 15-23. |
| [3] | WANG Weiyi, SHI Lei, ZHANG Zhiyu, ZHANG Guiling, SHI Guanggang. Effects of high fat diet on allergic rhinitis mice and intestinal flora [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 21-29. |
| [4] | LI Zhuojun, SONG Xicheng, CHEN Xiumei. Analysis of pulmonary function changes in patients with obstructive sleep apnea hypopnea syndrome [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 45-50. |
| [5] | LI Chaoyou, WANG Anyang,XUE Gang. The relationship between central obesity and head and neck cancer [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 120-125. |
| [6] | LI Yanzhong. Obesity and obstructive sleep apnea. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(5): 1-4. |
| [7] | MEI Xubin, ZOU Xinbo, ZHAO Limin, ZOU Huizhong, CHEN Zhengang, LIU Wenjun. Correlation between chronic hypoxia caused by obstructive sleep apnea syndrome and nonalcoholic fatty liver disease [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(5): 11-13. |
|
||