Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (5): 118-124.doi: 10.6040/j.issn.1673-3770.0.2024.364

• Review • Previous Articles    

Research progress on high fat diets and hearing loss based on the gut barrier- inner ear axis hypothesis

HU Nan1, HUANG Yunye2, LIU Jing3, XU Zhibin4   

  1. 1. Weight Loss Center of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China2. Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China3. Department of Otolaryngology, Dafang People's Hospital, Bijie 551699, Guizhou, China4. Department of Organ Transplantation, National Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
  • Published:2025-09-19

Abstract: Obesity-related complications have become an increasingly important public health concern. In addition to well-known co-morbidities such as cardiovascular disease, recent research has shown a positive association between obesity and hearing impairment, which is more pronounced in individuals with a high body mass index. This finding highlights the need for further research to explore whether early intervention and lifestyle changes can reduce the risk of hearing loss. As a major contributor to obesity, a high-fat diet may involve mechanisms affecting hearing that are not yet fully understood. This review aims to investigate how a high-fat diet disrupts the gut barrier and subsequently affects hearing function, proposing and evaluating the gut barrier-internal ear axis hypothesis. By synthesising epidemiological data, animal experiments and clinical trial results, this review analyses in depth the links between high-fat diet-induced changes in gut microbiota, gut barrier dysfunction and hearing loss. The findings not only reveal potential links between gut health and hearing function, but also provide new insights into how lifestyle factors can influence distant organ function through the gut microbiome. This understanding has significant implications for promoting interdisciplinary research and developing novel strategies for the prevention and treatment of hearing loss.

Key words: Obesity, Intestinal flora, Hearing function, Intestinal barrier, High-fat diet

CLC Number: 

  • R735.7
[1] Chadha S, Kamenov K, Cieza A. The world report on hearing, 2021[J]. Bull World Health Organ, 2021, 99(4): 242-242A. doi:10.2471/BLT.21.285643
[2] Global costs of unaddressed hearing loss and cost-effectiveness of interventions[R].Geneva:World Health Organization,2017.http://apps.who.int/iris/bitstream/10665/254659/1/9789241512046-eng.pdf?ua=1[cited 2020 Nov 26]
[3] 曲伸, 林紫薇. 中国肥胖症临床研究与实践的现状及展望[J]. 中华内分泌代谢杂志, 2023, 39(11): 909-916. doi:10.3760/cma.j.cn311282-20230403-00149 QU Shen, LIN Ziwei. Current status and outlook of clinical research and practice on obesity in China[J]. Chinese Journal of Endocrinology and Metabolism, 2023, 39(11): 909-916. doi:10.3760/cma.j.cn311282-20230403-00149
[4] Croll PH, Voortman T, Vernooij MW, et al. The association between obesity, diet quality and hearing loss in older adults[J]. Aging, 2019, 11(1): 48-62. doi:10.18632/aging.101717
[5] Hu HH, Tomita K, Kuwahara K, et al. Obesity and risk of hearing loss: a prospective cohort study[J]. Clin Nutr, 2020, 39(3): 870-875. doi:10.1016/j.clnu.2019.03.020
[6] Scinicariello F, Carroll Y, Eichwald J, et al. Association of obesity with hearing impairment in adolescents[J]. Sci Rep, 2019, 9(1): 1877. doi:10.1038/s41598-018-37739-5
[7] Yang JR, Hidayat K, Chen CL, et al. Body mass index, waist circumference, and risk of hearing loss: a meta-analysis and systematic review of observational study[J]. Environ Health Prev Med, 2020, 25(1): 25. doi:10.1186/s12199-020-00862-9
[8] Tavanai E, Rahimi V, Khalili ME, et al. Age-related hearing loss: an updated and comprehensive review of the interventions[J]. Iran J Basic Med Sci, 2024, 27(3): 256-269. doi:10.22038/IJBMS.2023.72863.15849
[9] Lee YY, Ha J, Kim YS, et al. Abnormal cholesterol metabolism and lysosomal dysfunction induce age-related hearing loss by inhibiting mTORC1-TFEB-dependent autophagy[J]. Int J Mol Sci, 2023, 24(24): 17513. doi:10.3390/ijms242417513
[10] Gopinath B, Sue CM, Flood VM, et al. Dietary intakes of fats, fish and nuts and olfactory impairment in older adults[J]. Br J Nutr, 2015, 114(2): 240-247. doi:10.1017/S0007114515001257
[11] Gopinath B, Flood VM, Teber E, et al. Dietary intake of cholesterol is positively associated and use of cholesterol-lowering medication is negatively associated with prevalent age-related hearing loss[J]. J Nutr, 2011, 141(7): 1355-1361. doi:10.3945/jn.111.138610
[12] Kociszewska D, Chan J, Thorne PR, et al. The link between gut dysbiosis caused by a high-fat diet and hearing loss[J]. Int J Mol Sci, 2021, 22(24): 13177. doi:10.3390/ijms222413177
[13] 杨靖源, 蒙俊, 杨堃. 肠紧密连接蛋白与肠道屏障功能[J]. 医学综述, 2022, 28(2): 235-239. doi:10.3969/j.issn.1006-2084.2022.02.005 YANG Jingyuan, MENG Jun, YANG Kun. Intestinal tight junction protein and intestinal barrier function[J]. Medical Recapitulate, 2022, 28(2): 235-239. doi:10.3969/j.issn.1006-2084.2022.02.005
[14] 王安洋, 李超友, 薛刚, 等. 肠道菌群与甲状腺疾病的关系[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 132-139. doi:10.6040/j.issn.1673-3770.0.2021.482 WANG Anyang, LI Chaoyou, XUE Gang, et al. Relationship between intestinal flora and thyroid diseases[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(1): 132-139. doi:10.6040/j.issn.1673-3770.0.2021.482
[15] Caminero A, Pinto-Sanchez MI. Host immune interactions in chronic inflammatory gastrointestinal conditions[J]. Curr Opin Gastroenterol, 2020, 36(6): 479-484. doi:10.1097/MOG.0000000000000673
[16] Li DF, Yang MF, Xu J, et al. Extracellular vesicles: the next generation theranostic nanomedicine for inflammatory bowel disease[J]. Int J Nanomedicine, 2022, 17: 3893-3911. doi:10.2147/IJN.S370784
[17] Van K, Burns JL, Monk JM. Effect of short-chain fatty acids on inflammatory and metabolic function in an obese skeletal muscle cell culture model[J]. Nutrients, 2024, 16(4): 500. doi:10.3390/nu16040500
[18] Bach Knudsen KE,Lærke HN, Hedemann MS, et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation[J]. Nutrients, 2018, 10(10): 1499. doi:10.3390/nu10101499
[19] Ferrer-Picón E, Dotti I, Corraliza AM, et al. Intestinal inflammation modulates the epithelial response to butyrate in patients with inflammatory bowel disease[J]. Inflamm Bowel Dis, 2020, 26(1): 43-55. doi:10.1093/ibd/izz119
[20] Silva JPB, Navegantes-Lima KC, Oliveira ALB, et al. Protective mechanisms of butyrate on inflammatory bowel disease[J]. Curr Pharm Des, 2018, 24(35): 4154-4166. doi:10.2174/1381612824666181001153605
[21] Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice[J]. Sci Transl Med, 2009, 1(6): 6ra14. doi:10.1126/scitranslmed.3000322
[22] Poritz LS, Garver KI, Green C, et al. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis[J]. J Surg Res, 2007, 140(1): 12-19. doi:10.1016/j.jss.2006.07.050
[23] Yin C, Zhong RQ, Zhang WD, et al. The potential of bile acids as biomarkers for metabolic disorders[J]. Int J Mol Sci, 2023, 24(15): 12123. doi:10.3390/ijms241512123
[24] Stenman LK, Holma R, Korpela R. High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids[J]. World J Gastroenterol, 2012, 18(9): 923-929. doi:10.3748/wjg.v18.i9.923
[25] Rohr MW, Narasimhulu CA, Rudeski-Rohr TA, et al. Negative effects of a high-fat diet on intestinal permeability: a review[J]. Adv Nutr, 2020, 11(1): 77-91. doi:10.1093/advances/nmz061
[26] Cao ST, Zhang QH, Wang CC, et al. LPS challenge increased intestinal permeability, disrupted mitochondrial function and triggered mitophagy of piglets[J]. Innate Immun, 2018, 24(4): 221-230. doi:10.1177/1753425918769372
[27] Stephens M, von der Weid PY. Lipopolysaccharides modulate intestinal epithelial permeability and inflammation in a species-specific manner[J]. Gut Microbes, 2020, 11(3): 421-432. doi:10.1080/19490976.2019.1629235
[28] Tomassen MMM, Govers C, Vos AP, et al. Dietary fat induced chylomicron-mediated LPS translocation in a bicameral Caco-2cell model[J]. Lipids Health Dis, 2023, 22(1): 4. doi:10.1186/s12944-022-01754-3
[29] Long-Smith C, O’Riordan KJ, Clarke G, et al. Microbiota-gut-brain axis: new therapeutic opportunities[J]. Annu Rev Pharmacol Toxicol, 2020, 60: 477-502. doi:10.1146/annurev-pharmtox-010919-023628
[30] Wang X, Pan L, Gu JY, et al. Associations between gut microbiota and alcohol abuse: a Mendelian randomisation and bioinformatics study[J]. J Mol Neurosci, 2024, 74(3): 80. doi:10.1007/s12031-024-02259-7
[31] Wang YX, Nie JY, Yan KG, et al. Inflammatory diet, gut microbiota and sensorineural hearing loss: a cross-sectional and Mendelian randomization study[J]. Front Nutr, 2024, 11: 1458484. doi:10.3389/fnut.2024.1458484
[32] Xie YY, Fang C, Lu LH, et al. Extract of Tinospora sinensis alleviates LPS-induced neuroinflammation in mice by regulating TLR4/NF-κB/NLRP3 signaling pathway[J]. J Ethnopharmacol, 2024, 337(Pt 1): 118807. doi:10.1016/j.jep.2024.118807
[33] Shi XR. Pathophysiology of the cochlear intrastrial fluid-blood barrier(review)[J]. Hear Res, 2016, 338: 52-63. doi:10.1016/j.heares.2016.01.010
[34] Mammano F. Inner ear connexin channels: roles in development and maintenance of cochlear function[J]. Cold Spring Harb Perspect Med, 2019, 9(7): a033233. doi:10.1101/cshperspect.a033233
[35] Semyachkina-Glushkovskaya O, Esmat A, Bragin D, et al. Phenomenon of music-induced opening of the blood-brain barrier in healthy mice[J]. Proc Biol Sci, 2020, 287(1941): 20202337. doi:10.1098/rspb.2020.2337
[36] Ito T, Kurata N, Fukunaga Y. Tissue-resident macrophages in the stria vascularis[J]. Front Neurol, 2022, 13: 818395. doi:10.3389/fneur.2022.818395
[37] Gupta S, Curhan SG, Curhan GC. Biomarkers of systemic inflammation and risk of incident hearing loss[J]. Ear Hear, 2019, 40(4): 981-989. doi:10.1097/AUD.0000000000000678
[38] Lassale C, Vullo P, Cadar D, et al. Association of inflammatory markers with hearing impairment: the English Longitudinal Study of Ageing[J]. Brain Behav Immun, 2020, 83: 112-119. doi:10.1016/j.bbi.2019.09.020
[39] Denton AJ, Godur DA, Mittal J, et al. Recent advancements in understanding the gut microbiome and the inner ear axis[J]. Otolaryngol Clin North Am, 2022, 55(5): 1125-1137. doi:10.1016/j.otc.2022.07.002
[40] Hwang JH, Wu CC, Hsu CJ, et al. Association of central obesity with the severity and audiometric configurations of age-related hearing impairment[J]. Obesity, 2009, 17(9): 1796-1801. doi:10.1038/oby.2009.66
[41] Kociszewska D, Vlajkovic SM. The association of inflammatory gut diseases with neuroinflammatory and auditory disorders[J]. Front Biosci(Elite Ed), 2022, 14(2): 8. doi:10.31083/j.fbe1402008
[42] Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases[J]. Immune Netw, 2018, 18(4): e27. doi:10.4110/in.2018.18.e27
[43] Hu BH, Zhang CL, Frye MD. Immune cells and non-immune cells with immune function in mammalian cochleae[J]. Hear Res, 2018, 362: 14-24. doi:10.1016/j.heares.2017.12.009
[44] Wang XL, Gu JY, Xu K, et al. Sound conditioning strategy promoting paracellular permeability of the blood-labyrinth-barrier benefits inner ear drug delivery[J]. Bioeng Transl Med, 2024, 9(1): e10596. doi:10.1002/btm2.10596
[45] Jiang H, Wang XH, Zhang JH, et al. Microvascular networks in the area of the auditory peripheral nervous system[J]. Hear Res, 2019, 371: 105-116. doi:10.1016/j.heares.2018.11.012
[46] Dhukhwa A, Bhatta P, Sheth S, et al. Targeting inflammatory processes mediated by TRPVI and TNF-α for treating noise-induced hearing loss[J]. Front Cell Neurosci, 2019, 13: 444. doi:10.3389/fncel.2019.00444
[47] Kang K, Chen SH, Wang DP, et al. Inhibition of endoplasmic reticulum stress improves chronic ischemic hippocampal damage associated with suppression of IRE1α/TRAF2/ASK1/JNK-dependent apoptosis[J]. Inflammation, 2024, 47(4): 1479-1490. doi:10.1007/s10753-024-01989-5
[48] CHAN J. The Gut Inner Ear Axis: on the road to discovery[D]. Auckland: University of Auckland, 2021
[49] Hwang JH, Hsu CJ, Yu WH, et al. Diet-induced obesity exacerbates auditory degeneration via hypoxia, inflammation, and apoptosis signaling pathways in CD/1 mice[J]. PLoS One, 2013, 8(4): e60730. doi:10.1371/journal.pone.0060730
[50] Han Q, Yeung SC, Ip MSM, et al. Dysregulation of cardiac lipid parameters in high-fat high-cholesterol diet-induced rat model[J]. Lipids Health Dis, 2018, 17(1): 255. doi:10.1186/s12944-018-0905-3
[1] DOU Tao, DOU Naixin, WANG Ru, YANG Qian, GUAN Qingbo, WANG Lei, YU Chunxiao. Bioinformatic analysis of miRNA-mRNA network involved in thyroid function impairment by high-fat diet [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(4): 151-160.
[2] GUO Ruixiang, WANG Yan. Recent advances in research on the association between intestinal flora and obstructive sleep apnea-related cognitive impairment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 15-23.
[3] WANG Weiyi, SHI Lei, ZHANG Zhiyu, ZHANG Guiling, SHI Guanggang. Effects of high fat diet on allergic rhinitis mice and intestinal flora [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 21-29.
[4] LI Zhuojun, SONG Xicheng, CHEN Xiumei. Analysis of pulmonary function changes in patients with obstructive sleep apnea hypopnea syndrome [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 45-50.
[5] LI Chaoyou, WANG Anyang,XUE Gang. The relationship between central obesity and head and neck cancer [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 120-125.
[6] LI Yanzhong. Obesity and obstructive sleep apnea. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(5): 1-4.
[7] MEI Xubin, ZOU Xinbo, ZHAO Limin, ZOU Huizhong, CHEN Zhengang, LIU Wenjun. Correlation between chronic hypoxia caused by obstructive sleep apnea syndrome and nonalcoholic fatty liver disease [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(5): 11-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!