Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (6): 24-32.doi: 10.6040/j.issn.1673-3770.0.2022.241
• Research Progress • Previous Articles Next Articles
SUN Xiwen, LUO Chunyu, LI Zhipeng, ZHANG Weitian
CLC Number:
[1] Chen X, Li JB, Kang R, et al. Ferroptosis: machinery and regulation[J]. Autophagy, 2021, 17(9): 2054-2081. doi:10.1080/15548627.2020.1810918 [2] Chen X, Kang R, Kroemer G, et al. Organelle-specific regulation of ferroptosis[J]. Cell Death Differ, 2021, 28(10): 2843-2856. doi:10.1038/s41418-021-00859-z [3] Wang Y, Tang M. PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance[J]. Environ Pollut, 2019, 254: 112937. doi:10.1016/j.envpol.2019.07.105 [4] Yoshida M, Minagawa S, Araya J, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis[J]. Nat Commun, 2019, 10(1): 3145. doi:10.1038/s41467-019-10991-7 [5] Huang CL, Yang MC, Deng J, et al. Upregulation and activation of p53 by erastininduced reactive oxygen species contribute to cytotoxic and cytostatic effects in A549 lung cancer cells[J]. Oncol Rep, 2018, 40(4): 2363-2370. doi:10.3892/or.2018.6585 [6] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. doi:10.1016/j.cell.2012.03.042 [7] Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death Nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. doi:10.1016/j.cell.2017.09.021 [8] Jiang XJ, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. doi:10.1038/s41580-020-00324-8 [9] Zhao JM, Dar HH, Deng YH, et al. PEBP1 acts as a rheostat between prosurvival autophagy and ferroptotic death in asthmatic epithelial cells[J]. Proc Natl Acad Sci USA, 2020, 117(25): 14376-14385. doi:10.1073/pnas.1921618117 [10] Anthonymuthu TS, Tyurina YY, Sun WY, et al. Resolving the paradox of ferroptotic cell death: Ferrostatin-1 binds to 15LOX/PEBP1 complex, suppresses generation of peroxidized ETE-PE, and protects against ferroptosis[J]. Redox Biol, 2021, 38: 101744. doi:10.1016/j.redox.2020.101744 [11] Doll S, Conrad M. Iron and ferroptosis: a still ill-defined liaison[J]. IUBMB Life, 2017, 69(6): 423-434. doi:10.1002/iub.1616 [12] Stoyanovsky DA, Tyurina YY, Shrivastava I, et al. Iron catalysis of lipid peroxidation in ferroptosis: regulated enzymatic or random free radical reaction? [J]. Free Radic Biol Med, 2019, 133: 153-161. doi:10.1016/j.freeradbiomed.2018.09.008 [13] Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 49. doi:10.1038/s41392-020-00428-9 [14] Wang XT, Wang ZX, Cao J, et al. Ferroptosis mechanisms involved in hippocampal-related diseases[J]. Int J Mol Sci, 2021, 22(18): 9902. doi:10.3390/ijms22189902 [15] Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172(3): 409-422.e21. doi:10.1016/j.cell.2017.11.048 [16] Alim I, Caulfield JT, Chen YX, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke[J]. Cell, 2019, 177(5): 1262-1279.e25. doi:10.1016/j.cell.2019.03.032 [17] Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2): 317-331. doi:10.1016/j.cell.2013.12.010 [18] Koppula P, Zhuang L, Gan BY. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620. doi:10.1007/s13238-020-00789-5 [19] Gao W, Li LL, Wang YJ, et al. Bronchial epithelial cells: the key effector cells in the pathogenesis of chronic obstructive pulmonary disease? [J]. Respirology, 2015, 20(5): 722-729. doi:10.1111/resp.12542 [20] 黄丹怡, 张婷, 陈静, 等. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83. doi:10.6040/j.issn.1673-3770.0.2021.583 HUANG Danyi, ZHANG Ting, CHEN Jing, et al. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83. doi:10.6040/j.issn.1673-3770.0.2021.583 [21] Kim N, Han D, Wang IJ, et al. Altered secretome by diesel exhaust particles and lipopolysaccharide in primary human nasal epithelium[J]. J Allergy Clin Immunol, 2022, 149(6): 2126-2138. doi:10.1016/j.jaci.2021.12.793 [22] Lugg ST, Scott A, Parekh D, et al. Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease[J]. Thorax, 2022, 77(1): 94-101. doi:10.1136/thoraxjnl-2020-216296 [23] Krysko O, Holtappels G, Zhang N, et al. Alternatively activated macrophages and impaired phagocytosis of S. aureus in chronic rhinosinusitis[J]. Allergy, 2011, 66(3): 396-403. doi:10.1111/j.1398-9995.2010.02498.x [24] Li JY, Yao YM, Tian YP. Ferroptosis: a trigger of proinflammatory state progression to immunogenicity in necroinflammatory disease[J]. Front Immunol, 2021, 12: 701163. doi:10.3389/fimmu.2021.701163 [25] Cheng Y, Song YT, Chen H, et al. Ferroptosis mediated by lipid reactive oxygen species: a possible causal link of neuroinflammation to neurological disorders[J]. Oxid Med Cell Longev, 2021: 5005136. doi:10.1155/2021/5005136 [26] 李贝, 田首元, 郭志佳, 等. 铁死亡与炎症性疾病的研究现状[J]. 医学综述, 2021, 27(7): 1302-1306. doi: 10.3969/j.issn.1006-2084.2021.07.010 LI Bei, TIAN Shouyuan, GUO Zhijia, et al. Research status of ferroptosis and inflammatory diseases[J]. Medical Recapitulate, 2021, 27(7): 1302-1306. doi: 10.3969/j.issn.1006-2084.2021.07.010 [27] 中华医学会呼吸病学分会哮喘学组. 上-下气道慢性炎症性疾病联合诊疗与管理专家共识[J]. 中华医学杂志, 2017, 97(26): 2001-2022. doi:10.3760/cma.j.issn.0376-2491.2017.26.001 [28] 王娜, 柴向斌. 前列腺源性ETS因子在哮喘及鼻黏膜炎性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 136-141. doi: 10.6040/j.issn.1673-3770.0.2020.498 WANG Na, CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141. doi: 10.6040/j.issn.1673-3770.0.2020.498 [29] Akar-Ghibril N, Casale T, Custovic A, et al. Allergic endotypes and phenotypes of asthma[J]. J Allergy Clin Immunol Pract, 2020, 8(2): 429-440. doi:10.1016/j.jaip.2019.11.008 [30] Wenzel SE, Tyurina YY, Zhao JM, et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals[J]. Cell, 2017, 171(3): 628-641.e26. doi:10.1016/j.cell.2017.09.044 [31] Nagasaki T, Schuyler AJ, Zhao J, et al. 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation[J]. J Clin Invest, 2022, 132(1): e151685. doi:10.1172/jci151685 [32] Yamada K, St Croix CM, Deng Y, et al. 15 lipoxygenase linked mitophagy promotes epithelial cell mitochondrial loss in type-2 hi asthma[C] //D12. BASIC SCIENCE INSIGHTS INTO MODULATION OF IMMUNE AND INFLAMMATORY PATHWAYS. American Thoracic Society, 2022. doi:10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a5009 [33] Banerjee P, Balraj P, Ambhore NS, et al. Network and co-expression analysis of airway smooth muscle cell transcriptome delineates potential gene signatures in asthma[J]. Sci Rep, 2021, 11(1): 14386. doi:10.1038/s41598-021-93845-x [34] Tang WF, Dong M, Teng FZ, et al. Environmental allergens house dust mite-induced asthma is associated with ferroptosis in the lungs[J]. Exp Ther Med, 2021, 22(6): 1483. doi:10.3892/etm.2021.10918 [35] Han F, Li SJ, Yang YK, et al. Interleukin-6 promotes ferroptosis in bronchial epithelial cells by inducing reactive oxygen species-dependent lipid peroxidation and disrupting iron homeostasis[J]. Bioengineered, 2021, 12(1): 5279-5288. doi:10.1080/21655979.2021.1964158 [36] Yang N, Shang Y. Ferrostatin-1 and 3-methyladenine ameliorate ferroptosis in OVA-induced asthma model and in IL-13-challenged BEAS-2B cells[J]. Oxid Med Cell Longev, 2022: 9657933. doi:10.1155/2022/9657933 [37] Wu YP, Chen HX, Xuan NX, et al. Induction of ferroptosis-like cell death of eosinophils exerts synergistic effects with glucocorticoids in allergic airway inflammation[J]. Thorax, 2020, 75(11): 918-927. doi:10.1136/thoraxjnl-2020-214764 [38] Lin ZW, Xu YF, Guan LL, et al. Seven ferroptosis-specific expressed genes are considered as potential biomarkers for the diagnosis and treatment of cigarette smoke-induced chronic obstructive pulmonary disease[J]. Ann Transl Med, 2022, 10(6): 331. doi:10.21037/atm-22-1009 [39] Lian NF, Zhang QX, Chen J, et al. The role of ferroptosis in bronchoalveolar epithelial cell injury induced by cigarette smoke extract[J]. Front Physiol, 2021, 12: 751206. doi:10.3389/fphys.2021.751206 [40] Ghio AJ, Hilborn ED, Stonehuerner JG, et al. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect[J]. Am J Respir Crit Care Med, 2008, 178(11): 1130-1138. doi:10.1164/rccm.200802-334OC [41] Liu JX, Zhang ZX, Yang Y, et al. NCOA4-mediated ferroptosis in bronchial epithelial cells promotes macrophage M2 polarization in COPD emphysema[J]. Int J Chron Obstruct Pulmon Dis, 2022, 17: 667-681. doi:10.2147/COPD.S354896 [42] Jeridi A, Günes Günsel G, Novikova M, et al. Macrophage induced ferroptotic cell death of epithelial cells drives COPD pathogenesis[C/OL] //A17. COPD: SINGLE CELL RNA SEQUENCING, EPIGENETICS, MODELS, AND MACROPHAGES. American Thoracic Society:[S.l.] , 2022. doi:10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a1038 [43] Wang Y, Liao S, Pan ZH, et al. Hydrogen sulfide alleviates particulate matter-induced emphysema and airway inflammation by suppressing ferroptosis[J]. Free Radic Biol Med, 2022, 186: 1-16. doi:10.1016/j.freeradbiomed.2022.04.014 [44] Zhang ZX, Fu CL, Liu JX, et al. Hypermethylation of the Nrf2 promoter induces ferroptosis by inhibiting the Nrf2-GPX4 axis in COPD[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16: 3347-3362. doi:10.2147/COPD.S340113 [45] Stockwell BR, Jiang XJ, Gu W. Emerging mechanisms and disease relevance of ferroptosis[J]. Trends Cell Biol, 2020, 30(6): 478-490. doi:10.1016/j.tcb.2020.02.009 [46] Dar HH, Tyurina YY, Mikulska-Ruminska K, et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium[J]. J Clin Invest, 2018, 128(10): 4639-4653. doi:10.1172/JCI99490 [47] Amaral EP, Costa DL, Namasivayam S, et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis[J]. J Exp Med, 2019, 216(3): 556-570. doi:10.1084/jem.20181776 [48] Habib HM, Ibrahim S, Zaim A, et al. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators[J]. Biomedecine Pharmacother, 2021, 136: 111228. doi:10.1016/j.biopha.2021.111228 [49] Yang M, Lai CL. SARS-CoV-2 infection: can ferroptosis be a potential treatment target for multiple organ involvement? [J]. Cell Death Discov, 2020, 6: 130. doi:10.1038/s41420-020-00369-w [50] Li JC, Lu KM, Sun FL, et al. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway[J]. J Transl Med, 2021, 19(1): 96. doi:10.1186/s12967-021-02745-1 [51] He RY, Liu BH, Xiong R, et al. Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against Sepsis-induced acute lung injury[J]. Cell Death Discov, 2022, 8(1): 43. doi:10.1038/s41420-021-00807-3 [52] Liu X, Wang L, Xing QZ, et al. Sevoflurane inhibits ferroptosis: a new mechanism to explain its protective role against lipopolysaccharide-induced acute lung injury[J]. Life Sci, 2021, 275: 119391. doi:10.1016/j.lfs.2021.119391 [53] Liu PF, Feng YT, Li HW, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis[J]. Cell Mol Biol Lett, 2020, 25: 10. doi:10.1186/s11658-020-00205-0 [54] 蒋捍东, 陈碧. 间质性肺疾病的再认识[J]. 中华医学杂志, 2021, 101(20): 1453-1457. doi:10.3760/cma.j.cn112137-2020831-02514 JIANG Handong, CHEN Bi. Interstitial lung disease revisited[J]. National Medical Journal of China, 2021, 101(20): 1453-1457. doi:10.3760/cma.j.cn112137-2020831-02514 [55] He J, Li X, Yu M. Bioinformatics analysis identifies potential ferroptosis key genes in the pathogenesis of pulmonary fibrosis[J]. Front Genet, 2021, 12: 788417. doi:10.3389/fgene.2021.788417 [56] Li YP, Ning SW, Yang Y, et al. A ferroptosis-related gene signature for lung function and quality of life in patients with idiopathic pulmonary fibrosis[All Fields].2021 [57] Gong Y, Wang N, Liu NG, et al. Lipid peroxidation and GPX4 inhibition are common causes for myofibroblast differentiation and ferroptosis[J]. DNA Cell Biol, 2019, 38(7): 725-733. doi:10.1089/dna.2018.4541 [58] Liu X, Zhang JQ, Xie W. The role of ferroptosis in acute lung injury[J]. Mol Cell Biochem, 2022, 477(5): 1453-1461. doi:10.1007/s11010-021-04327-7 [59] Liu TY, Bao R, Wang QS, et al. SiO2-induced ferroptosis in macrophages promotes the development of pulmonary fibrosis in silicosis models[J]. Toxicol Res, 2021, 11(1): 42-51. doi:10.1093/toxres/tfab105 [60] Persson HL. Iron-dependent lysosomal destabilization initiates silica-induced apoptosis in murine macrophages[J]. Toxicol Lett, 2005, 159(2): 124-133. doi:10.1016/j.toxlet.2005.05.002 [61] Takahashi M, Mizumura K, Gon Y, et al. Iron-dependent mitochondrial dysfunction contributes to the pathogenesis of pulmonary fibrosis[J]. Front Pharmacol, 2021, 12: 643980. doi:10.3389/fphar.2021.643980 [62] Yao Y, Chen CL, Yu D, et al. Roles of follicular helper and regulatory T cells in allergic diseases and allergen immunotherapy[J]. Allergy, 2021, 76(2): 456-470. doi:10.1111/all.14639 [63] 黄嘉莉, 杨淑荣. 变应性鼻炎中信号传导通路的研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 125-129. doi:10.6040/j.issn.1673-3770.0.2019.355 HUANG Jiali, YANG Shurong. Advances in research on related signaling pathways in allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 125-129. doi:10.6040/j.issn.1673-3770.0.2019.355 [64] Yao Y, Chen ZA, Zhang H, et al. Selenium-GPX4 axis protects follicular helper T cells from ferroptosis[J]. Nat Immunol, 2021, 22(9): 1127-1139. doi:10.1038/s41590-021-00996-0 [65] Yu SJ, Jia JQ, Zheng JY, et al. Recent progress of ferroptosis in lung diseases[J]. Front Cell Dev Biol, 2021, 9: 789517. doi:10.3389/fcell.2021.789517 |
[1] | ZHANG Zhen, YANG Zhuoying, ZHOU Jiani, ZHANG Dawei, CHEN Renjie. Efficacy and safety of ciclesonide nasal spray in the treatment of seasonal allergic rhinitis:a Meta-analysis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1): 13-20. |
[2] | CHONG Weikun, WANG Juan. Efficacy of Omalizumab in children with moderate and severe allergic asthma and chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1): 21-26. |
[3] | WU Richaifu, SU Riguge, MENG Yongmei. Establishment and evaluation of ovalbumin induced allergic rhinitis guinea pig model and preliminary analysis of Mongolian medicine tongue and urine diagnosis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1): 32-38. |
[4] | ZHU Han, LIU Xuexia, ZHANG Hua. Study on the role of autophagy in the pathogenesis of allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1): 79-86. |
[5] | WANG Lixue, ZENG Yi, WANG Lixin, PENG Xianbing. Clinical observation of the effect of infiltrating Biprofen Gelatin Sponge after functional endoscopic sinus surgery [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 16-25. |
[6] | WANG Jian, DU Weijia, XUE Tao, CHEN Fuquan. Analysis of the epidemic characteristics of allergic rhinitis and related allergic diseases in China using Baidu index data [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 31-41. |
[7] | WANG Xiaoai, ZHANG Qianqian, CHENG Xiangyu, LI Zhipeng, ZHANG Weitian, YE Haibo. A clinical efficacy analysis of vidian neurectomy in the treatment of type 2 chronic rhinosinusitis with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 42-49. |
[8] | ZHU Yu, ZHU Xinhua. Research progress on the role of TH2 cytokines in Type2 chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 156-161. |
[9] | LU Gan, DENG Yuqin, TAO Zezhang. Relationship between allergic diseases and diabetes mellitus and underlying mechanisms [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 215-222. |
[10] | BI Xiaoyun, MA Benxu, WANG Xinru, LI Xuhao, YANG Jiguo. Meta-analysis of randomized controlled trials of acupoint application in treatment of children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 75-85. |
[11] | HOU Lingxiao, ZHANG Changcui, XU Anting, FAN Xintai, WANG Na. Role of CD4+ T cells from nasal mucosa in the pathogenesis of patients with seasonal allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 96-104. |
[12] | CUI Ning, WANG Yunmeng, YANG Jingpu. Research progress on the role and regulatory mechanism of group 2 innate lymphoid cells in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 153-159. |
[13] | YUAN Yue, FU Shengyao, JIANG Yan, CHEN Min. Research progress of pyroptosis in chronic airway inflammatory disease [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 166-171. |
[14] | WANG Weiyi, SHI Lei, ZHANG Zhiyu, ZHANG Guiling, SHI Guanggang. Effects of high fat diet on allergic rhinitis mice and intestinal flora [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 21-29. |
[15] | ZHAI Rui, LI Yuan, YU Jinglong, CHEN Xi, ZHENG Youyou, LIU Zhaolan, WANG Junhong. Meta-analysis of clinical intradermal acupuncture efficacy for treatment of allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 35-45. |
|