Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (3): 78-83.doi: 10.6040/j.issn.1673-3770.0.2021.583

Previous Articles     Next Articles

Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps

HUANG Danyi, ZHANG TingOverview,CHEN Jing, ZHANG Wei   

  1. Department of Otorhinolaryngology & Head and Neck Surgery/Institute of Otorhinolaryngology & Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
  • Published:2022-06-15

Abstract: Chronic rhinosinusitis with nasal polyps(CRSwNP)is a common disease in otorhinolaryngology characterized by the highly heterogeneous chronic inflammation of the nasal and sinonasal mucosa. Recently, CRSwNP has been reported to have substantially affected the quality of life of patients and increased social and economic burdens due to the increase in its worldwide incidence, frequent recurrence, and poor therapeutic outcomes. As a gatekeeper, the epithelial barrier, which is composed of epithelial cells, is the first line of defense against the invasion of pathogens and allergens in the nasal cavity. It maintains the homeostasis within hosts by initiating defense mechanisms, activating various physicochemical factors, and regulating immune responses. Studies have shown that epithelial barrier dysfunction is closely related to the occurrence of CRSwNP; this is currently one of the major focuses of CRSwNP-associated research. Therefore, it is crucial to elucidate the molecular biological mechanisms underlying CRSwNP-associated epithelial barrier dysfunction. This review summarizes the progress of current research regarding the functions and the mechanisms underlying the action of, and the factors damaging, the epithelial barrier during CRSwNP. Our review will provide insights into the pathological mechanism of CRSwNP and shed light on new directions for research regarding its diagnosis and treatment.

Key words: Epithelial barrier, Chronic rhinosinusitis, Nasal polyp, Epithelial-mesenchymal transition, Heterogeneous chronic inflammation

CLC Number: 

  • R765.4
[1] Loxham M, Davies DE. Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients[J]. J Allergy Clin Immunol, 2017, 139(6): 1736-1751. doi:10.1016/j.jaci.2017.04.005.
[2] Moens E, Veldhoen M. Epithelial barrier biology: good fences make good neighbours[J]. Immunology, 2012, 135(1): 1-8. doi:10.1111/j.1365-2567.2011.03506.x.
[3] Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-γ and IL-4[J]. J Allergy Clin Immunol, 2012, 130(5): 1087-1096.e10. doi:10.1016/j.jaci.2012.05.052.
[4] Pothoven KL, Norton JE, Hulse KE, et al. Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease[J]. J Allergy Clin Immunol, 2015, 136(3): 737-746.e4. doi:10.1016/j.jaci.2015.01.043.
[5] Toppila-Salmi S, van Drunen CM, Fokkens WJ, et al. Molecular mechanisms of nasal epithelium in rhinitis and rhinosinusitis[J]. Curr Allergy Asthma Rep, 2015, 15(2): 495. doi:10.1007/s11882-014-0495-8.
[6] Georas SN, Rezaee F. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation[J]. J Allergy Clin Immunol, 2014, 134(3): 509-520. doi:10.1016/j.jaci.2014.05.049.
[7] Lam K, Schleimer R, Kern RC. The etiology and pathogenesis of chronic rhinosinusitis: a review of current hypotheses[J]. Curr Allergy Asthma Rep, 2015, 15(7): 41. doi:10.1007/s11882-015-0540-2.
[8] Kern RC, Conley DB, Walsh W, et al. Perspectives on the etiology of chronic rhinosinusitis: an immune barrier hypothesis[J]. Am J Rhinol, 2008, 22(6): 549-559. doi:10.2500/ajr.2008.22.3228.
[9] Zhang N, van Crombruggen K, Gevaert E, et al. Barrier function of the nasal mucosa in health and type-2 biased airway diseases[J]. Allergy, 2016, 71(3): 295-307. doi:10.1111/all.12809.
[10] Stevens WW, Schleimer RP, Kern RC. Chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol Pract, 2016, 4(4): 565-572. doi:10.1016/j.jaip.2016.04.012.
[11] Gohy S, Hupin C, Ladjemi MZ, et al. Key role of the epithelium in chronic upper airways diseases[J]. Clin Exp Allergy, 2020, 50(2): 135-146. doi:10.1111/cea.13539.
[12] Khalmuratova R, Park JW, Shin HW. Immune cell responses and mucosal barrier disruptions in chronic rhinosinusitis[J]. Immune Netw, 2017, 17(1): 60-67. doi:10.4110/in.2017.17.1.60.
[13] Lambrecht BN, Hammad H. Allergens and the airway epithelium response: gateway to allergic sensitization[J]. J Allergy Clin Immunol, 2014, 134(3): 499-507. doi:10.1016/j.jaci.2014.06.036.
[14] Lambrecht BN, Hammad H. The airway epithelium in asthma[J]. Nat Med, 2012, 18(5): 684-692. doi:10.1038/nm.2737.
[15] Niessen CM. Tight junctions/adherens junctions: basic structure and function[J]. J Invest Dermatol, 2007, 127(11): 2525-2532. doi:10.1038/sj.jid.5700865.
[16] Kojima T, Go M, Takano K, et al. Regulation of tight junctions in upper airway epithelium[J]. Biomed Res Int, 2013, 2013: 947072. doi:10.1155/2013/947072.
[17] Zihni C, Mills C, Matter K, et al. Tight junctions: from simple barriers to multifunctional molecular gates[J]. Nat Rev Mol Cell Biol, 2016, 17(9): 564-580. doi:10.1038/nrm.2016.80.
[18] Balda MS, Matter K. Tight junctions and the regulation of gene expression[J]. Biochim Biophys Acta, 2009, 1788(4): 761-767. doi:10.1016/j.bbamem.2008.11.024.
[19] Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions?[J]. Nat Rev Immunol, 2021, 21(11): 739-751. doi:10.1038/s41577-021-00538-7.
[20] Pothoven KL, Schleimer RP. The barrier hypothesis and Oncostatin M: restoration of epithelial barrier function as a novel therapeutic strategy for the treatment of type 2 inflammatory disease[J]. Tissue Barriers, 2017, 5(3): e1341367. doi:10.1080/21688370.2017.1341367.
[21] Bernstein JM, Gorfien J, Noble B, et al. Nasal polyposis: immunohistochemistry and bioelectrical findings(a hypothesis for the development of nasal polyps)[J]. J Allergy Clin Immunol, 1997, 99(2): 165-175. doi:10.1016/s0091-6749(97)70091-5.
[22] Rogers GA, den Beste K, Parkos CA, et al. Epithelial tight junction alterations in nasal polyposis[J]. Int Forum Allergy Rhinol, 2011, 1(1): 50-54. doi:10.1002/alr.20014.
[23] Meng J, Zhou P, Liu YF, et al. The development of nasal polyp disease involves early nasal mucosal inflammation and remodelling[J]. PLoS One, 2013, 8(12): e82373. doi:10.1371/journal.pone.0082373.
[24] Huang ZQ, Liu J, Ong HH, et al. Interleukin-13 alters tight junction proteins expression thereby compromising barrier function and dampens rhinovirus induced immune responses in nasal epithelium[J]. Front Cell Dev Biol, 2020, 8: 572749. doi:10.3389/fcell.2020.572749.
[25] 史丽丽, 陆翔, 刘争, 等. 上皮性钙黏蛋白与闭锁蛋白在慢性鼻-鼻窦炎上皮的表达及意义[J]. 临床耳鼻咽喉头颈外科杂志, 2012, 26(11): 499-501, 506. doi:10.13201/j.issn.1001-1781.2012.11.008. SHI Lili, LU Xiang, LIU Zheng, et al. The expression of E-cadherin and occludin in epithelium of chronic rhinosinositis and its significant[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2012, 26(11): 499-501, 506. doi:10.13201/j.issn.1001-1781.2012.11.008.
[26] Li Y, Wang XD, Wang RH, et al. The expression of epithelial intercellular junctional proteins in the sinonasal tissue of subjects with chronic rhinosinusitis: a histopathologic study[J]. ORL J Otorhinolaryngol Relat Spec, 2014, 76(2): 110-119. doi:10.1159/000362246.
[27] Jiao J, Wang M, Duan S, et al. Transforming growth factor-β1 decreases epithelial tight junction integrity in chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2018, 141(3): 1160-1163.e9. doi:10.1016/j.jaci.2017.08.045.
[28] Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis[J]. J Clin Invest, 2003, 112(12): 1776-1784. doi:10.1172/JCI20530.
[29] Das V, Bhattacharya S, Chikkaputtaiah C, et al. The basics of epithelial-mesenchymal transition(EMT): a study from a structure, dynamics, and functional perspective[J]. J Cell Physiol, 2019:5. doi:10.1002/jcp.28160.
[30] Thiery JP, Acloque H, Huang RYJ, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871-890. doi:10.1016/j.cell.2009.11.007.
[31] Huang RYJ, Guilford P, Thiery JP. Early events in cell adhesion and polarity during epithelial-mesenchymal transition[J]. J Cell Sci, 2012, 125(Pt 19): 4417-4422. doi:10.1242/jcs.099697.
[32] Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3): 178-196. doi:10.1038/nrm3758.
[33] Bartis D, Mise N, Mahida RY, et al. Epithelial-mesenchymal transition in lung development and disease: does it exist and is it important? [J]. Thorax, 2014, 69(8): 760-765. doi:10.1136/thoraxjnl-2013-204608.
[34] Kagalwalla AF, Akhtar N, Woodruff SA, et al. Eosinophilic esophagitis: epithelial mesenchymal transition contributes to esophageal remodeling and reverses with treatment[J]. J Allergy Clin Immunol, 2012, 129(5): 1387-1396.e7. doi:10.1016/j.jaci.2012.03.005.
[35] 高云博, 张媛, 张罗. 上皮-间质转化与慢性鼻窦炎的研究进展[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(3): 231-236.doi:10.3760/cma.j.issn.1673-0860.2019.03.015. GAO Yunbo, ZHANG Yuan, ZHANG Luo. Advance in epithelial-mesenchymal transition in chronic rhinosinusitis[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2019, 54(3): 231-236. doi:10.3760/cma.j.issn.1673-0860.2019.03.015.
[36] Könnecke M, Burmeister M, Pries R, et al. Epithelial-mesenchymal transition in chronic rhinosinusitis: differences revealed between epithelial cells from nasal polyps and inferior turbinates[J]. Arch Immunol Ther Exp(Warsz), 2017, 65(2): 157-173. doi:10.1007/s00005-016-0409-7.
[37] Yan B, Wang Y, Li Y, et al. Inhibition of arachidonate 15-lipoxygenase reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol, 2019, 9(3): 270-280. doi:10.1002/alr.22243.
[38] Yang NN, Cheng H, Mo Q, et al. miR1555p downregulation inhibits epithelialtomesenchymal transition by targeting SIRT1 in human nasal epithelial cells[J]. Mol Med Rep, 2020, 22(5): 3695-3704. doi:10.3892/mmr.2020.11468.
[39] Zhang T, Zhou Y, You B, et al. miR-30a-5p inhibits epithelial-to-mesenchymal transition by targeting CDK6 in nasal polyps[J]. Am J Rhinol Allergy, 2021, 35(2): 152-163. doi:10.1177/1945892420939814.
[40] Shikani AH, Sidhaye VK, Basaraba RJ, et al. Mucosal expression of aquaporin 5 and epithelial barrier proteins in chronic rhinosinusitis with and without nasal polyps[J]. Am J Otolaryngol, 2014, 35(3): 377-383. doi:10.1016/j.amjoto.2013.11.011.
[41] Yukitatsu Y, Hata M, Yamanegi K, et al. Decreased expression of VE-cadherin and claudin-5 and increased phosphorylation of VE-cadherin in vascular endothelium in nasal polyps[J]. Cell Tissue Res, 2013, 352(3): 647-657. doi:10.1007/s00441-013-1583-0.
[42] Chen B, Shaari J, Claire SE, et al. Altered sinonasal ciliary dynamics in chronic rhinosinusitis[J]. Am J Rhinol, 2006, 20(3): 325-329. doi:10.2500/ajr.2006.20.2870.
[43] Gudis D, Zhao KQ, Cohen NA. Acquired Cilia dysfunction in chronic rhinosinusitis[J]. Am J Rhinol Allergy, 2012, 26(1): 1-6. doi:10.2500/ajra.2012.26.3716.
[44] Jiao J, Duan S, Meng N, et al. Role of IFN-γ, IL-13, and IL-17 on mucociliary differentiation of nasal epithelial cells in chronic rhinosinusitis with nasal polyps[J]. Clin Exp Allergy, 2016, 46(3): 449-460. doi:10.1111/cea.12644.
[45] London NR Jr, Tharakan A, Ramanathan M Jr. The role of innate immunity and aeroallergens in chronic rhinosinusitis[J]. Adv Otorhinolaryngol, 2016, 79: 69-77. doi:10.1159/000445132.
[46] Henriquez OA, den Beste K, Hoddeson EK, et al. House dust mite allergen Der p 1 effects on sinonasal epithelial tight junctions[J]. Int Forum Allergy Rhinol, 2013, 3(8): 630-635. doi:10.1002/alr.21168.
[47] London NR Jr, Tharakan A, Lane AP, et al. Nuclear erythroid 2-related factor 2 activation inhibits house dust mite-induced sinonasal epithelial cell barrier dysfunction[J]. Int Forum Allergy Rhinol, 2017, 7(5): 536-541. doi:10.1002/alr.21916.
[48] Rusznak C, Sapsford RJ, Devalia JL, et al. Cigarette smoke potentiates house dust mite allergen-induced increase in the permeability of human bronchial epithelial cells in vitro[J]. Am J Respir Cell Mol Biol, 1999, 20(6): 1238-1250. doi:10.1165/ajrcmb.20.6.3226.
[49] Rusznak C, Mills PR, Devalia JL, et al. Effect of cigarette smoke on the permeability and IL-1beta and sICAM-1 release from cultured human bronchial epithelial cells of never-smokers, smokers, and patients with chronic obstructive pulmonary disease[J]. Am J Respir Cell Mol Biol, 2000, 23(4): 530-536. doi:10.1165/ajrcmb.23.4.3959.
[50] Tharakan A, Halderman AA, Lane AP, et al. Reversal of cigarette smoke extract-induced sinonasal epithelial cell barrier dysfunction through Nrf2 Activation[J]. Int Forum Allergy Rhinol, 2016, 6(11): 1145-1150. doi:10.1002/alr.21827.
[51] Zhao RW, Guo ZQ, Zhang RX, et al. Nasal epithelial barrier disruption by particulate matter ≤2.5 μm via tight junction protein degradation[J]. J Appl Toxicol, 2018, 38(5): 678-687. doi:10.1002/jat.3573.
[52] Hariri BM, Cohen NA. New insights into upper airway innate immunity[J]. Am J Rhinol Allergy, 2016, 30(5): 319-323. doi:10.2500/ajra.2016.30.4360.
[53] Rudack C, Steinhoff M, Mooren F, et al. PAR-2 activation regulates IL-8 and GRO-alpha synthesis by NF-kappaB, but not RANTES, IL-6, eotaxin or TARC expression in nasal epithelium[J]. Clin Exp Allergy, 2007, 37(7): 1009-1022. doi:10.1111/j.1365-2222.2007.02686.x.
[54] Ossovskaya VS, Bunnett NW. Protease-activated receptors: contribution to physiology and disease[J]. Physiol Rev, 2004, 84(2): 579-621. doi:10.1152/physrev.00028.2003.
[55] Altunbulakli C, Costa R, Lan F, et al. Staphylococcus aureus enhances the tight junction barrier integrity in healthy nasal tissue, but not in nasal polyps[J]. J Allergy Clin Immunol, 2018, 142(2): 665-668.e8. doi:10.1016/j.jaci.2018.01.046.
[56] Martens K, Seys SF, Alpizar YA, et al. Staphylococcus aureus enterotoxin B disrupts nasal epithelial barrier integrity[J]. Clin Exp Allergy, 2021, 51(1): 87-98. doi:10.1111/cea.13760.
[57] Sajjan U, Wang Q, Zhao Y, et al. Rhinovirus disrupts the barrier function of polarized airway epithelial cells[J]. Am J Respir Crit Care Med, 2008, 178(12): 1271-1281. doi:10.1164/rccm.200801-136OC.
[58] Banyer JL, Hamilton NH, Ramshaw IA, et al. Cytokines in innate and adaptive immunity[J]. Rev Immunogenet, 2000, 2(3): 359-373.
[59] 慕婷婷, 杨玉娟, 张宇, 等. IL-36在慢性鼻-鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 114-118. doi:10.6040/j.issn.1673-3770.0.2020.146. MU Tingting, YANG Yujuan, ZHANG Yu, et al. Research progress of IL-36 in chronic rhinosinusitis with nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(1): 114-118.doi:10.6040/j.issn.1673-3770.0.2020.146.
[60] Wise SK, Laury AM, Katz EH, et al. Interleukin-4 and interleukin-13 compromise the sinonasal epithelial barrier and perturb intercellular junction protein expression[J]. Int Forum Allergy Rhinol, 2014, 4(5): 361-370. doi:10.1002/alr.21298.
[61] Wang CS, Yan B, Zhang L. The epithelium-derived inflammatory mediators of chronic rhinosinusitis with nasal polyps[J]. Expert Rev Clin Immunol, 2020, 16(3): 293-310. doi:10.1080/1744666X.2020.1723417.
[62] Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia[J]. Physiol Rev, 1996, 76(3): 839-885. doi:10.1152/physrev.1996.76.3.839.
[63] Cho HJ, Kim CH. Oxygen matters: hypoxia as a pathogenic mechanism in rhinosinusitis[J]. BMB Rep, 2018, 51(2): 59-64. doi:10.5483/bmbrep.2018.51.2.014.
[64] 郑静, 魏欣, 粘家斌, 等. 低氧诱导鼻黏膜上皮细胞释放高迁移率族蛋白1促进上皮屏障损伤[J]. 临床耳鼻咽喉头颈外科杂志, 2017, 31(15): 1178-1181. doi:10.13201/j.issn.1001-1781.2017.15.009. ZHENG Jing, WEI Xin, ZHAN Jiabin, et al. High mobility group box1 contributes to hypoxia-induced barrier dysfunction of nasal epithelial cells[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2017, 31(15): 1178-1181. doi:10.13201/j.issn.1001-1781.2017.15.009.
[65] Shin HW, Cho K, Kim DW, et al. Hypoxia-inducible factor 1 mediates nasal polypogenesis by inducing epithelial-to-mesenchymal transition[J]. Am J Respir Crit Care Med, 2012, 185(9): 944-954. doi:10.1164/rccm.201109-1706OC.
[1] AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14.
[2] YAO Shuang,LOU Hongfei. Advances in endotypes and precision medicine in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 20-29.
[3] LIANG Xu,SHI Li. Research progress in biologic targeted drug therapy for chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 30-35.
[4] SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42.
[5] WANG Huan, HU Li,YU Hongmeng. Research progress of olfactory dysfunction in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 43-49.
[6] YI Ruonan,CHEN Fuquan. Eosinophils and Olfactory Dysfunction [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 50-55.
[7] GU Yu, WAN Xin,XIAO Zi'an. The interaction between neutrophils and eosinophils in chronic rhinosinusitis and the implications on treatment options [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 56-63.
[8] LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70.
[9] QIAO Xinjie,. Research progress on the signal transduction pathway and other factors related to epithelial-mesenchymal transformation in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 71-77.
[10] LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91.
[11] YU Longgang,JIANG Yan. Research progress on the correlation between nasal bacterial microbiome and chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 92-97.
[12] CAO Xuan,XIAO Xuping, LI Yunqiu. Advances in the application of hyaluronic acid in chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 104-109.
[13] WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141.
[14] LIU Yitong, ZHOU Suizi,QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146.
[15] LIU Houjun, ZHANG Qian, CHENG You, XUE Fei, XU Li, WU Minghai. Relationships between RANTES gene polymorphisms and chronic sinusitis with bilateral nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 165-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Shou-huan,CHEN Bin,YIN Shan-kai,SU Kai-ming,JIANG Xiao . Morphological changes of the upper airway in OSAHS patients with UPPP
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(5): 385 -388 .
[2] SONG Xi-cheng,ZHANG Qing-quan,XIA Yong-hong,LIU Lu-yi, YU Lu-xin,WANG Gao,JIANG Xiu-liang . Post-operative ICU monitoring and nursing for patients with OSAHS[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(5): 389 -392 .
[3] XUE Wei-guo,SUN Jie,JIN Zheng,SHI Wen-bin,XIN Lu,LIN Guo-Jing,LI Jia-yun . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(4): 300 -303 .
[4] ZHANG Qing-quan,LI Xin-min,WANG Qiang,WANG Yong-fu . Some experience of the endoscopy treatment of maxillary sinus lesion with the canine tooth fossa approach[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(1): 38 -39 .
[5] DONG Pin,LI Xiao-yan,TU Li-qiang,MENG Qing-hong,WANG Sang,XIE Jin,JIANG Yan . Reconstruction for advanced hypopharyngeal carcinoma and laryngeal recurrent carcinoma[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(5): 385 -387 .
[6] JIANG Shao-hong,ZHU Yu-hong,WANG Qiang,SONG Xi-cheng . Intractable primary epistaxis: a report of 101 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(6): 542 -544 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(1): 74 -77 .
[8] LEIXun, LIU Qianghe, KONG Zhongyu, XIANG Qiu, GENG WANping, HUANG Hui, DONG Yiyuan, LIU Fangxian. ARelationship between expression of Survivin and radiosensitization effect of EGCG in xenotransplanted nasopharyngeal carcinoma[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2009, 23(1): 6 -9 .
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2009, 23(2): 73 -74 .
[10] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2010, 24(01): 29 -33 .