Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2024, Vol. 38 ›› Issue (1): 79-86.doi: 10.6040/j.issn.1673-3770.0.2022.428
• Review • Previous Articles Next Articles
ZHU Han1,2,3,4, LIU Xuexia5, ZHANG Hua2,3,4
CLC Number:
[1] 古丽白热木·玉素因, 毛艳, 刘燕, 等. TLRs介导的炎症信号通路与变应性鼻炎发病机制研究进展[J]. 医学综述, 2020, 26(1): 50-53, 58. doi:10.3969/j.issn.1006-2084.2020.01.010 GULIBAIREMU·Yusuyin, MAO Yan, LIU Yan, et al. Research progress in TLRs-mediated inflammatory signaling pathways and pathogenesis of allergic rhinitis[J]. Medical Recapitulate, 2020, 26(1): 50-53, 58. doi:10.3969/j.issn.1006-2084.2020.01.010 [2] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组,中华医学会耳鼻咽喉头颈外科学分会鼻科学组.中国变应性鼻炎诊断和治疗指南(2022年, 修订版)[J].中华耳鼻咽喉头颈外科杂志, 2022, 57(2): 106-129. doi:10.3760/cma.j.cn115330-20211228-00828 [3] Li W, He PC, Huang YG, et al. Selective autophagy of intracellular organelles: recent research advances[J]. Theranostics, 2021, 11(1): 222-256. doi:10.7150/thno.49860 [4] Zhao HY, Dong F, Li YH, et al. Inhibiting ATG5 mediated autophagy to regulate endoplasmic reticulum stress and CD4+ T lymphocyte differentiation: mechanisms of acupuncture's effects on asthma[J]. Biomedecine Pharmacother, 2021, 142: 112045. doi:10.1016/j.biopha.2021.112045 [5] Hailfinger S, Schulze-Osthoff K. Impaired autophagy in psoriasis and atopic dermatitis: a new therapeutic target?[J]. J Invest Dermatol, 2021, 141(12): 2775-2777. doi:10.1016/j.jid.2021.06.006 [6] D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43(6): 582-592. doi:10.1002/cbin.11137 [7] 段玉珊, 刘琼. 自噬在肺部炎症性疾病中的研究新进展[J]. 重庆医科大学学报, 2017, 42(1): 7-10. doi:10.13406/j.cnki.cyxb.001156 DUAN Yushan, LIU Qiong. Research progress of autophagy in lung inflammatory diseases[J]. Journal of Chongqing Medical University, 2017, 42(1): 7-10. doi:10.13406/j.cnki.cyxb.001156 [8] Liang S, Wu YS, Li DY, et al. Autophagy and renal fibrosis[J]. Aging Dis, 2022, 13(3): 712-731. doi:10.14336/AD.2021.1027 [9] 汝少国, 朱增光, 崔鹏飞. 细胞自噬与应激反应[J]. 中国海洋大学学报(自然科学版), 2022, 52(7): 1-13. doi:10.16441/j.cnki.hdxb.20210192 RU Shaoguo, ZHU Zengguang, CUI Pengfei. Cellular autophagy and stress response[J]. Periodical of Ocean University of China, 2022, 52(7): 1-13. doi:10.16441/j.cnki.hdxb.20210192 [10] Manganelli V, Matarrese P, Antonioli M, et al. Raft-like lipid microdomains drive autophagy initiation via AMBRA1-ERLIN1 molecular association within MAMs[J]. Autophagy, 2021, 17(9): 2528-2548. doi:10.1080/15548627.2020.1834207 [11] Sawa-Makarska J, Baumann V, Coudevylle N, et al. Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation[J]. Science, 2020, 369(6508): eaaz7714. doi:10.1126/science.aaz7714 [12] Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms[J]. Autophagy, 2018, 14(2): 207-215. doi:10.1080/15548627.2017.1378838 [13] Qureshi-Baig K, Kuhn D, Viry E, et al. Hypoxia-induced autophagy drives colorectal cancer initiation and progression by activating the PRKC/PKC-EZR(ezrin)pathway[J]. Autophagy, 2020, 16(8): 1436-1452. doi:10.1080/15548627.2019.1687213 [14] Galluzzi L, Bravo-San Pedro JM, Levine B, et al. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles[J]. Nat Rev Drug Discov, 2017, 16(7): 487-511. doi:10.1038/nrd.2017.22 [15] Klapan K, Frange Ž, Markov N, et al. Evidence for Lysosomal Dysfunction within the Epidermis in Psoriasis and Atopic Dermatitis[J]. J Invest Dermatol, 2021, 141(12): 2838-2848.e4. doi: 10.1016/j.jid.2021.05.016 [16] Hou TH, Sun XY, Zhu J, et al. IL-37 ameliorating allergic inflammation in atopic dermatitis through regulating microbiota and AMPK-mTOR signaling pathway-modulated autophagy mechanism[J]. Front Immunol, 2020, 11: 752. doi:10.3389/fimmu.2020.00752 [17] Guo J, Peng L, Zeng JH, et al. Paeoniflorin suppresses allergic and inflammatory responses by promoting autophagy in rats with urticaria[J]. Exp Ther Med, 2021, 21(6): 590. doi:10.3892/etm.2021.10022 [18] Lv XX, Li K, Hu ZW. Asthma and autophagy[J]. Adv Exp Med Biol, 2020, 1207: 581-584. doi:10.1007/978-981-15-4272-5_41 [19] Li YH, Liu JX, Cui YY, et al. Sodium butyrate attenuates bovine mammary epithelial cell injury by inhibiting the formation of neutrophil extracellular traps[J]. Int Immunopharmacol, 2022, 110: 109009. doi:10.1016/j.intimp.2022.109009 [20] Silveira JS, Antunes GL, Kaiber DB, et al. Autophagy induces eosinophil extracellular traps formation and allergic airway inflammation in a murine asthma model[J]. J Cell Physiol, 2020, 235(1): 267-280. doi:10.1002/jcp.28966 [21] Hailfinger S, Schulze-Osthoff K. Impaired autophagy in psoriasis and atopic dermatitis: a new therapeutic target?[J]. J Invest Dermatol, 2021, 141(12): 2775-2777. doi:10.1016/j.jid.2021.06.006 [22] Eschenbacher W, Straesser M, Knoeddler A, et al. Biologics for the treatment of allergic rhinitis, chronic rhinosinusitis, and nasal polyposis[J]. Immunol Allergy Clin North Am, 2020, 40(4): 539-547. doi:10.1016/j.iac.2020.06.001 [23] Mao DH, He ZM, Li LL, et al. Recent progress in traditional Chinese medicines and their mechanism in the treatment of allergic rhinitis[J]. J Healthc Eng, 2022, 2022: 3594210. doi:10.1155/2022/3594210 [24] Cheng L, Zhou WC. Sublingual immunotherapy of house dust mite respiratory allergy in China[J]. Allergol Immunopathol, 2019, 47(1): 85-89. doi:10.1016/j.aller.2018.02.008 [25] Han SW, Sun L, He F, et al. Anti-allergic activity of glycyrrhizic acid on IgE-mediated allergic reaction by regulation of allergy-related immune cells[J]. Sci Rep, 2017, 7(1): 7222. doi:10.1038/s41598-017-07833-1 [26] 陈蕊, 赵颖, 宋鸿儒, 等. 变应性鼻炎发病机制研究进展[J]. 河北北方学院学报(自然科学版), 2022, 38(2): 46-50. doi:10.3969/j.issn.1673-1492.2022.02.015 CHEN Rui, ZHAO Ying, SONG Hongru, et al. Research advances in pathogenesis of allergic rhinitis[J]. Journal of Hebei North University(Natural Science Edition), 2022, 38(2): 46-50. doi:10.3969/j.issn.1673-1492.2022.02.015 [27] 周杰, 陈曙光, 宋志强. 特异性免疫疗法治疗特应性皮炎[J]. 中华临床免疫和变态反应杂志, 2021, 15(1): 76-81. doi:10.3969/j.issn.1673-8705.2021.01.014 ZHOU Jie, CHEN Shuguang, SONG Zhiqiang. Allergen-specific immunotherapy in atopic dermatitis[J]. Chinese Journal of Allergy & Clinical Immunology, 2021, 15(1): 76-81. doi:10.3969/j.issn.1673-8705.2021.01.014 [28] Li H, Wen YH, Wu SL, et al. Epigenetic modification of enhancer of zeste homolog 2 modulates the activation of dendritic cells in allergen immunotherapy[J]. Int Arch Allergy Immunol, 2019, 180(2): 120-127. doi:10.1159/000500882 [29] Haruna T, Kariya S, Fujiwara T, et al. Role of whole saliva in the efficacy of sublingual immunotherapy in seasonal allergic rhinitis[J]. Allergol Int, 2019, 68(1): 82-89. doi:10.1016/j.alit.2018.07.008 [30] 陈玉迪, 胡艳, 隋海晶, 等. 抗IgE单克隆抗体在变态反应性疾病治疗中的应用[J]. 中华临床免疫和变态反应杂志, 2018, 12(3): 302-307. doi:10.3969/j.issn.1673-8705.2018.03.008 CHEN Yudi, HU Yan, SUI Haijing, et al. Use of anti-IgE monoclonal antibody in treatment of allergic diseases[J]. Chinese Journal of Allergy and Clinical Immunology, 2018, 12(3): 302-307. doi:10.3969/j.issn.1673-8705.2018.03.008 [31] Tai JH, Han MS, Kwak J, et al. Association between microbiota and nasal mucosal diseases in terms of immunity[J]. Int J Mol Sci, 2021, 22(9): 4744. doi:10.3390/ijms22094744 [32] Karatzas K, Katsifarakis N, Riga M, et al. New European Academy of Allergy and Clinical Immunology definition on pollen season mirrors symptom load for grass and birch pollen-induced allergic rhinitis[J]. Allergy, 2018, 73(9): 1851-1859. doi:10.1111/all.13487 [33] Zhou LB, Zheng YM, Liao WJ, et al. MUC1 deficiency promotes nasal epithelial barrier dysfunction in subjects with allergic rhinitis[J]. J Allergy Clin Immunol, 2019, 144(6): 1716-1719.e5. doi:10.1016/j.jaci.2019.07.042 [34] Celebi Sozener Z, Ozdel Ozturk B, Cerci P, et al. Epithelial barrier hypothesis: Effect of the external exposome on the microbiome and epithelial barriers in allergic disease[J]. Allergy, 2022, 77(5): 1418-1449. doi: 10.1111/all.15240 [35] Nakayama T, Hirahara K, Onodera A, et al. Th2 cells in health and disease[J]. Annu Rev Immunol, 2017, 35: 53-84. doi:10.1146/annurev-immunol-051116-052350 [36] Palomares ó, Sánchez-Ramón S, Dávila I, et al. dIvergEnt: how IgE axis contributes to the continuum of allergic asthma and anti-IgE therapies[J]. Int J Mol Sci, 2017, 18(6): 1328. doi:10.3390/ijms18061328 [37] Bousquet J, Anto JM, Bachert C, et al. Allergic rhinitis[J]. Nat Rev Dis Primers, 2020, 6(1): 95. doi:10.1038/s41572-020-00227-0 [38] Han XR, Krempski JW, Nadeau K. Advances and novel developments in mechanisms of allergic inflammation[J]. Allergy, 2020, 75(12): 3100-3111. doi:10.1111/all.14632 [39] 刘一潼, 周穗子, 邱前辉. NLRP3炎症小体在慢性鼻窦炎和变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 142-146. doi:10.6040/j.issn.1673-3770.0.2021.584 LIU Yitong, ZHOU Suizi, QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146. doi:10.6040/j.issn.1673-3770.0.2021.584 [40] Okubo K, Kurono Y, Ichimura K, et al. Japanese guidelines for allergic rhinitis 2017[J]. Allergol Int, 2017, 66(2): 205-219. doi:10.1016/j.alit.2016.11.001 [41] Renand A, Shamji MH, Harris KM, et al. Synchronous immune alterations mirror clinical response during allergen immunotherapy[J]. J Allergy Clin Immunol, 2018, 141(5): 1750-1760.e1. doi:10.1016/j.jaci.2017.09.041 [42] 宋小云, 张俊杰. 舌下免疫治疗对变应性鼻炎患者炎症因子及自噬的影响[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(3): 230-234. doi:10.13201/j.issn.2096-7993.2020.03.011 SONG Xiaoyun, ZHANG Junjie. Effect of sublingual immunotherapy on inflammatory factors and autophagy in patients with allergic rhinitis[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2020, 34(3): 230-234. doi:10.13201/j.issn.2096-7993.2020.03.011 [43] Nedjic J, Aichinger M, Emmerich J, et al. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance [J]. Nature, 2008, 455(7211): 396-400 [44] Germic N, Frangez Z, Yousefi S, et al. Regulation of the innate immune system by autophagy: monocytes, macrophages, dendritic cells and antigen presentation[J]. Cell Death Differ, 2019, 26(4): 715-727. doi:10.1038/s41418-019-0297-6 [45] Münz C. Canonical and non-canonical functions of the autophagy machinery in MHC restricted antigen presentation[J]. Front Immunol, 2022, 13: 868888. doi:10.3389/fimmu.2022.868888 [46] Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research[J]. Cell, 2010, 140(3): 313-326. doi:10.1016/j.cell.2010.01.028 [47] 李静, 李勇. 自噬在变应性鼻炎中的作用[J]. 中华临床免疫和变态反应杂志, 2018, 12(6): 637-640. doi:10.3969∕j.issn.1673-8705.2018.06.007 LI Jing, LI Yong. Role of autophagy in pathogenesis of allergic rhinitis[J]. Chinese Journal of Allergy and Clinical Immunology, 2018, 12(6): 637-640. doi:10.3969∕j.issn.1673-8705.2018.06.007 [48] Chen Y, Yang M, Deng J, et al. Elevated levels of activated and pathogenic eosinophils characterize moderate-severe house dust mite allergic rhinitis[J]. J Immunol Res, 2020, 2020: 8085615. doi:10.1155/2020/8085615 [49] 朱歆洁, 陆美萍, 陈若希, 等. 儿童变应性鼻炎严重度与血清嗜酸粒细胞阳离子蛋白的相关性[J]. 中华耳鼻咽喉头颈外科杂志, 2012, 47(8): 628-632. doi: 10.3760/cma.j.issn.1673-0860.2012.08.004 [50] Zhang Y, Wang X, Zhang H, et al. Autophagy modulators from Chinese herbal medicines: mechanisms and therapeutic potentials for asthma[J]. Front Pharmacol, 2021, 12: 710679. doi:10.3389/fphar.2021.710679 [51] Germic N, Frangez Z, Yousefi S, et al. Regulation of the innate immune system by autophagy: neutrophils, eosinophils, mast cells, NK cells[J]. Cell Death Differ, 2019, 26(4): 703-714. doi:10.1038/s41418-019-0295-8 [52] 余杰情, 罗庆, 熊园平, 等. 变应性鼻炎中自噬相关基因LC3与ECP的表达及意义[J]. 临床耳鼻咽喉头颈外科杂志, 2019, 33(4): 322-325. doi:10.13201/j.issn.1001-1781.2019.04.009 YU Jieqing, LUO Qing, XIONG Yuanping, et al. Expression of LC3 and ECP in allergic rhinitis and their significance[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2019, 33(4): 322-325. doi:10.13201/j.issn.1001-1781.2019.04.009 [53] Jiang XQ, Fang L, Wu HM, et al. TLR2 regulates allergic airway inflammation and autophagy through PI3K/Akt signaling pathway[J]. Inflammation, 2017, 40(4): 1382-1392. doi:10.1007/s10753-017-0581-x [54] Zhu XY, Wang XP, Wang Y, et al. Exosomal long non-coding RNA GAS5 suppresses Th1 differentiation and promotes Th2 differentiation via downregulating EZH2 and T-bet in allergic rhinitis[J]. Mol Immunol, 2020, 118: 30-39. doi:10.1016/j.molimm.2019.11.009 [55] Fan YQ, Yang CC, Zhou JY, et al. Regulatory effect of glutathione on treg/Th17 cell balance in allergic rhinitis patients through inhibiting intracellular autophagy[J]. Immunopharmacol Immunotoxicol, 2021, 43(1): 58-67. doi:10.1080/08923973.2020.1850762 [56] He YQ, Qiao YL, Xu S, et al. Allergen induces CD11c+ dendritic cell autophagy to aggravate allergic rhinitis through promoting immune imbalance[J]. Int Immunopharmacol, 2022, 106: 108611. doi:10.1016/j.intimp.2022.108611 [57] Nian JB, Zeng M, Zheng J, et al. Epithelial cells expressed IL-33 to promote degranulation of mast cells through inhibition on ST2/PI3K/mTOR-mediated autophagy in allergic rhinitis[J]. Cell Cycle, 2020, 19(10): 1132-1142. doi:10.1080/15384101.2020.1749402 [58] Li BB, Chen YL, Pang FZ. microRNA-30a targets ATG5 and attenuates airway fibrosis in asthma by suppressing autophagy[J]. Inflammation, 2020, 43(1): 44-53. doi:10.1007/s10753-019-01076-0 [59] Song YL, Wang ZG, Jiang JZ, et al. DEK-targeting aptamer DTA-64 attenuates bronchial EMT-mediated airway remodelling by suppressing TGF-β1/Smad, MAPK and PI3K signalling pathway in asthma[J]. J Cell Mol Med, 2020, 24(23): 13739-13750. doi:10.1111/jcmm.15942 [60] Yang ZC, Qu ZH, Yi MJ, et al. miR-448-5p inhibits TGF-β1-induced epithelial-mesenchymal transition and pulmonary fibrosis by targeting Six1 in asthma[J]. J Cell Physiol, 2019, 234(6): 8804-8814. doi:10.1002/jcp.27540 [61] Lou LL, Tian MY, Chang JX, et al. MiRNA-192-5p attenuates airway remodeling and autophagy in asthma by targeting MMP-16 and ATG7[J]. Biomedecine Pharmacother, 2020, 122: 109692. doi:10.1016/j.biopha.2019.109692 [62] Li J, Li Y. Autophagy is involved in allergic rhinitis by inducing airway remodeling[J]. Int Forum Allergy Rhinol, 2019, 9(11): 1346-1351. doi:10.1002/alr.22424 |
[1] | ZHANG Zhen, YANG Zhuoying, ZHOU Jiani, ZHANG Dawei, CHEN Renjie. Efficacy and safety of ciclesonide nasal spray in the treatment of seasonal allergic rhinitis:a Meta-analysis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1): 13-20. |
[2] | WU Richaifu, SU Riguge, MENG Yongmei. Establishment and evaluation of ovalbumin induced allergic rhinitis guinea pig model and preliminary analysis of Mongolian medicine tongue and urine diagnosis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1): 32-38. |
[3] | SUN Xiwen, LUO Chunyu, LI Zhipeng, ZHANG Weitian. Role of ferroptosis in inflammatory diseases of the respiratory tract: a review of recent advances [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 24-32. |
[4] | WANG Jian, DU Weijia, XUE Tao, CHEN Fuquan. Analysis of the epidemic characteristics of allergic rhinitis and related allergic diseases in China using Baidu index data [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 31-41. |
[5] | WANG Xiaoai, ZHANG Qianqian, CHENG Xiangyu, LI Zhipeng, ZHANG Weitian, YE Haibo. A clinical efficacy analysis of vidian neurectomy in the treatment of type 2 chronic rhinosinusitis with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 42-49. |
[6] | LU Gan, DENG Yuqin, TAO Zezhang. Relationship between allergic diseases and diabetes mellitus and underlying mechanisms [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 215-222. |
[7] | BI Xiaoyun, MA Benxu, WANG Xinru, LI Xuhao, YANG Jiguo. Meta-analysis of randomized controlled trials of acupoint application in treatment of children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 75-85. |
[8] | HOU Lingxiao, ZHANG Changcui, XU Anting, FAN Xintai, WANG Na. Role of CD4+ T cells from nasal mucosa in the pathogenesis of patients with seasonal allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 96-104. |
[9] | YUAN Yue, FU Shengyao, JIANG Yan, CHEN Min. Research progress of pyroptosis in chronic airway inflammatory disease [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 166-171. |
[10] | WANG Weiyi, SHI Lei, ZHANG Zhiyu, ZHANG Guiling, SHI Guanggang. Effects of high fat diet on allergic rhinitis mice and intestinal flora [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 21-29. |
[11] | ZHAI Rui, LI Yuan, YU Jinglong, CHEN Xi, ZHENG Youyou, LIU Zhaolan, WANG Junhong. Meta-analysis of clinical intradermal acupuncture efficacy for treatment of allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 35-45. |
[12] | SUO Anqi, YANG Xinxin. Research progress on the relationship between mitochondrial autophagy and squamous cell carcinoma of the head and neck [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 111-117. |
[13] | SU Jie, YANG Fuyu, LI Meng, CHEN Huiru, JIANG Lisheng, WANG Lixiang. GLP-1 protected the diabetic retinopathy through induction of autophagy in rats [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 30-34. |
[14] | NI Jingzi, WAN Wenjin,CHENG Lei. Research progress on health-related quality of life in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 110-115. |
[15] | LIN Yihang,LI Youjin. Research progress on gut microbiome in children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 116-122. |
|