山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (2): 128-134.doi: 10.6040/j.issn.1673-3770.0.2021.097

• 综述 • 上一篇    

氨基糖苷类抗生素耳毒性影响因素研究进展

李聪1,2,李玲1,2,刘亭彦3, 陈良2   

  1. 1.滨州医学院第二临床医学院, 山东 烟台 264100;
    2.青岛大学附属烟台毓璜顶医院 耳鼻咽喉头颈外科/山东省耳鼻喉疾病临床医学研究中心, 山东 烟台 264099;
    3.滨州医学院烟台附属医院 耳鼻咽喉头颈外科, 山东 烟台 264199
  • 发布日期:2023-03-30
  • 通讯作者: 陈良. E-mail:entchenliang@hotmail.com
  • 基金资助:
    烟台市科技计划项目(2020MSGY078)

Research progress on influencing factors of aminoglycoside antibiotic ototoxicity

LI Cong1,2, LI Ling1,2, LIU Tingyan3, CHEN Liang2   

  1. 1. The 2nd Medical College of Binzhou Medical University, Yantai 264100, Shandong, China;
    2. Department of Otorhinolaryngology & Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University/Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai 264099, Shandong, China;
    3. Department of Otorhinolaryngology & Head and Neck Surgery, YanTai Affiliated Hospital of Binzhou Medical University, Yantai 264199, Shandong, China
  • Published:2023-03-30

摘要: 氨基糖苷类抗生素是一类广泛使用的治疗严重细菌感染的关键药物,耳毒性为药物的严重并发症,其主要病因是药物触发的内耳感觉毛细胞死亡。介导感觉毛细胞死亡的分子事件一直以来被广泛研究。近年来关于增加药物毒性的外在因素及导致个体敏感性增加的遗传因素不断被揭示,为氨基糖苷类抗生素耳毒性的预防及个体化治疗提供可能。现对氨基糖苷类抗生素内耳损害机制、影响药物耳毒性的多个因素及预防氨基糖苷类药物耳毒性的潜在干预策略的最新研究进展进行综述。

关键词: 氨基糖苷类抗生素, 耳毒性, 基因易感性, 炎症, 糖皮质激素

Abstract: Aminoglycoside antibiotics are potent and widely used primarily in the treatment of serious bacterial infections.A serious complication from using these antibiotics is ototoxicity.The main cause of ototoxicity is drug-triggered sensory hair cell damage in the inner ear.Molecular events that engender aminoglycoside-induced sensory hair cell death have been extensively studied.Recent reports have revealed the external factors that increase drug toxicity and the genetic factors that lead to increased sensitivity in individuals, which may provide prospective approach for individualized treatment and prevention of ototoxicity. In this review,we discuss the ototoxicity mechanism of aminoglycoside antibiotics, factors affecting drug ototoxicity,and potential intervention strategies to prevent ototoxicity.

Key words: Aminoglycoside antibiotics, Ototoxicity, Genetic susceptibility, Inflammation, Glucocorticoid

中图分类号: 

  • R764
[1] Tyers M, Wright GD. Drug combinations: a strategy to extend the life of antibiotics in the 21st century[J]. Nat Rev Microbiol, 2019, 17(3): 141-155. doi:10.1038/s41579-018-0141-x
[2] Iyer A, Madder A, Singh I. Teixobactins: a new class of 21st century antibiotics to combat multidrug-resistant bacterial pathogens[J]. Future Microbiol, 2019, 14: 457-460. doi:10.2217/fmb-2019-0056
[3] Zimmerman E, Lahav A. Ototoxicity in preterm infants: effects of genetics, aminoglycosides, and loud environmental noise[J]. J Perinatol, 2013, 33(1): 3-8. doi:10.1038/jp.2012.105
[4] Garinis AC, Cross CP, Srikanth P, et al. The cumulative effects of intravenous antibiotic treatments on hearing in patients with cystic fibrosis[J]. J Cyst Fibros, 2017, 16(3): 401-409. doi:10.1016/j.jcf.2017.01.006
[5] 于海洋, 孙丰林, 张增, 等. 鼻内镜下经咽鼓管鼓室内置管注药治疗梅尼埃病[J]. 山东大学耳鼻喉眼学报, 2011, 25(6): 64-66. doi:1673-3770(2011)06-0064-03 YU Haiyang, SUN Fenglin, ZHANG Zeng, et al. Intratympanic Gentamicin through an inserted catheter for Meniere's disease[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2011, 25(6): 64-66. doi:1673-3770(2011)06-0064-03
[6] Huth ME, Han KH, Sotoudeh K, et al. Designer aminoglycosides prevent cochlear hair cell loss and hearing loss[J]. J Clin Invest, 2015, 125(2): 583-592. doi:10.1172/JCI77424
[7] van Hecke R, van Rompaey V, Wuyts FL, et al. Systemic aminoglycosides-induced vestibulotoxicity in humans[J]. Ear Hear, 2017, 38(6): 653-662. doi:10.1097/AUD.0000000000000458
[8] Chen Y, Zhang SS, Chai RJ, et al. Hair cell regeneration[J]. Adv Exp Med Biol, 2019, 1130:1-16. doi:10.1007/978-981-13-6123-4_1
[9] Schacht J, Talaska AE, Rybak LP. Cisplatin and aminoglycoside antibiotics: hearing loss and its prevention[J]. Anat Rec(Hoboken), 2012, 295(11): 1837-1850. doi:10.1002/ar.22578
[10] Jing W, Zongjie H, Denggang FWu J, et al. Mitochondrial mutations associated with aminoglycoside ototoxicity and hearing loss susceptibility identified by meta-analysis[J]. J Med Genet, 2015, 52(2): 95-103. doi:10.1136/jmedgenet-2014-102753
[11] Prezant TR, Agapian JV, Bohlman MC, et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness[J]. Nat Genet, 1993, 4(3): 289-294. doi:10.1038/ng0793-289
[12] Zhao H, Li R, Wang Q, et al. Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family[J]. Am J Hum Genet, 2004, 74(1): 139-152. doi:10.1086/381133
[13] Koo JW, Quintanilla-Dieck L, Jiang M, et al. Endotoxemia-mediated inflammation potentiates aminoglycoside-induced ototoxicity[J]. Sci Transl Med, 2015, 7(298): 298ra118. doi:10.1126/scitranslmed.aac5546
[14] Hayward T, Young A, Jiang A, et al. Glucococorticoid receptor activation exacerbates aminoglycoside-induced damage to the zebrafish lateral line[J]. Hear Res, 2019,377: 12-23. doi:10.1016/j.heares.2019.03.002
[15] Garinis AC, Liao S, Cross CP, et al. Effect of gentamicin and levels of ambient sound on hearing screening outcomes in the neonatal intensive care unit: a pilot study[J]. Int J Pediatr Otorhinolaryngol, 2017, 97:42-50. doi:10.1016/j.ijporl.2017.03.025
[16] Denamur S, Tyteca D, Marchand-Brynaert J, et al. Role of oxidative stress in lysosomal membrane permeabilization and apoptosis induced by gentamicin, an aminoglycoside antibiotic[J]. Free Radic Biol Med, 2011, 51(9): 1656-1665. doi:10.1016/j.freeradbiomed.2011.07.015
[17] Lesniak W, Pecoraro VL, Schacht J. Ternary complexes of gentamicin with iron and lipid catalyze formation of reactive oxygen species[J]. Chem Res Toxicol, 2005, 18(2): 357-364. doi:10.1021/tx0496946
[18] Hashino E, Shero M. Endocytosis of aminoglycoside antibiotics in sensory hair cells[J]. Brain Res, 1995, 704(1): 135-140. doi:10.1016/0006-8993(95)01198-6
[19] Alharazneh A, Luk L, Huth M, et al. Functional hair cell mechanotransducer channels are required for aminoglycoside ototoxicity[J]. PLoS One, 2011, 6(7): e22347. doi:10.1371/journal.pone.0022347
[20] Makabe A, Kawashima Y, Sakamaki Y, et al. Systemic fluorescent gentamicin enters neonatal mouse hair cells predominantly through sensory mechanoelectrical transduction channels[J]. J Assoc Res Otolaryngol, 2020, 21(2): 137-149. doi:10.1007/s10162-020-00746-3
[21] Stepanyan RS, Indzhykulian AA, Vélez-Ortega AC, et al. TRPA1-mediated accumulation of aminoglycosides in mouse cochlear outer hair cells[J]. J Assoc Res Otolaryngol, 2011, 12(6): 729-740. doi:10.1007/s10162-011-0288-x
[22] Jiang M, Li H, Johnson A, et al. Inflammation up-regulates cochlear expression of TRPV1 to potentiate drug-induced hearing loss[J]. Sci Adv, 2019, 5(7): eaaw1836. doi:10.1126/sciadv.aaw1836
[23] Liu Q, Liu P, Ding Y, et al. Mitochondrial COI/tRNASer(UCN)G7444A mutation may be associated with aminoglycoside-induced and non-syndromic hearing impairment[J]. Mol Med Rep, 2015, 12(6): 8176-8178. doi:10.3892/mmr.2015.4484
[24] Zhang J, Lu B, Xia WW, et al. The mitochondrial transfer RNAAsp A7551G mutation may contribute to the clinical expression of deafness associated with the A1555G mutation in a pedigree with hearing impairment[J]. Mol Med Rep, 2019, 19(3): 1797-1802. doi:10.3892/mmr.2018.9790
[25] Zhao H, Young WY, Yan QF, et al. Functional characterization of the mitochondrial 12S rRNA C1494T mutation associated with aminoglycoside-induced and non-syndromic hearing loss[J]. Nucleic Acids Res, 2005, 33(3): 1132-1139. doi:10.1093/nar/gki262
[26] Ding Y, Xia BH, Teng YS, et al. Mitochondrial COI/tRNA Ser(UCN)G7444A mutation may be associated with hearing impairment in a Han Chinese family[J]. Int J Clin Exp Pathol, 2017, 10(9): 9496-9502. doi:10.1515/bjmg-2017-0025
[27] Thyagarajan D, Bressman S, Bruno C, et al. A novel mitochondrial 12SrRNA point mutation in Parkinsonism, deafness, and neuropathy[J]. Ann Neurol, 2000, 48(5): 730-736.
[28] Muyderman H, Sims NR, Tanaka M, et al. The mitochondrial T1095C mutation increases gentamicin-mediated apoptosis[J]. Mitochondrion, 2012, 12(4): 465-471. doi:10.1016/j.mito.2012.06.006
[29] Lu J, Li Z, Zhu Y, et al. Mitochondrial 12S rRNA variants in 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss[J]. Mitochondrion, 2010, 10(4): 380-390. doi:10.1016/j.mito.2010.01.007
[30] Kaur T, Zamani D, Tong L, et al. Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion[J]. J Neurosci, 2015, 35(45): 15050-15061. doi:10.1523/JNEUROSCI.2325-15.2015
[31] Hirose K, Li SZ, Ohlemiller KK, et al. Systemic lipopolysaccharide induces cochlear inflammation and exacerbates the synergistic ototoxicity of kanamycin and furosemide[J]. J Assoc Res Otolaryngol, 2014, 15(4): 555-570. doi:10.1007/s10162-014-0458-8
[32] Shimogori H, Yamashita H, Watanabe T, et al. A role of glucocorticoid receptors in the Guinea pig vestibular system[J]. Brain Res, 1999, 851(1/2): 258-260. doi:10.1016/s0006-8993(99)02141-1
[33] ten Cate WJ, Curtis LM, Rarey KE. Immunochemical detection of glucocorticoid receptors within rat cochlear and vestibular tissues[J]. Hear Res, 1992, 60(2): 199-204. doi:10.1016/0378-5955(92)90021-e
[34] Grewal AS, Nedzelski JM, Chen JM, et al. Dexamethasone uptake in the murine organ of Corti with transtympanic versus systemic administration[J]. Le J D'oto Rhino Laryngol De Chir Cervico Faciale, 2013, 42(1):19. doi:10.1186/1916-0216-42-19
[35] Lee JH, Oh SH, Kim TH, et al. Anti-apoptotic effect of dexamethasone in an ototoxicity model[J]. Biomater Res, 2017, 21:4. doi:10.1186/s40824-017-0090-x
[36] Güneri EA, Olgun Y, Aslıer M, et al. Cochlear and vestibular effects of combined intratympanic gentamicin and dexamethasone[J]. J Int Adv Otol, 2017, 13(1): 47-52. doi:10.5152/iao.2016.2181
[37] Zhang L, Zhou R, Li X, et al. Stress-induced change of mitochondria membrane potential regulated by genomic and non-genomic GR signaling: a possible mechanism for hippocampus atrophy in PTSD[J]. Med Hypotheses, 2006, 66(6): 1205-1208. doi:10.1016/j.mehy.2005.11.041
[38] Gilchrist FJ, Cox KJ, Rowe R, et al. Itraconazole and inhaled fluticasone causing hypothalamic-pituitary-adrenal axis suppression in adults with cystic fibrosis[J]. J Cyst Fibros, 2013, 12(4): 399-402. doi:10.1016/j.jcf.2012.10.007
[39] Bohne BA, Harding GW, Lee SC. Death pathways in noise-damaged outer hair cells[J]. Hear Res, 2007, 223(1/2): 61-70. doi:10.1016/j.heares.2006.10.004
[40] Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss[J]. Hear Res, 2015, 330(Pt B): 191-199. doi:10.1016/j.heares.2015.02.009
[41] Brown JJ, Brummett RE, Meikle MB, et al. Combined effects of noise and neomycin. Cochlear changes in the Guinea pig[J]. Acta Otolaryngol, 1978, 86(5/6): 394-400. doi:10.3109/00016487809107518
[42] Li H, Kachelmeier A, Furness DN, et al. Local mechanisms for loud sound-enhanced aminoglycoside entry into outer hair cells[J]. Front Cell Neurosci, 2015,14:130. doi:10.3389/fncel.2015.00130
[43] Cross CP, Liao S, Urdang ZD, et al. Effect of Sepsis and systemic inflammatory response syndrome on neonatal hearing screening outcomes following gentamicin exposure[J]. Int J Pediatr Otorhinolaryngol, 2015, 79(11): 1915-1919. doi:10.1016/j.ijporl.2015.09.004
[44] 贺芳, 温秀兰, 林艳, 等. 新生儿重症监护病房噪音水平调查与对策[J]. 护理学报, 2020, 27(12): 42-45. doi:10.16460/j.issn1008-9969.2020.12.042
[45] 张舒文, 李丽玲, 窦亚兰, 等. 新生儿重症监护病房噪声现况调查[J]. 护理研究, 2022, 36(6): 1093-1098. doi:10.12102/j.issn.1009-6493.2022.06.028 ZHANG Shuwen, LI Liling, DOU Yalan, et al. Investigation on noise status of neonatal intensive care unit[J]. Nursing Research of China, 2022, 36(6): 1093-1098. doi:10.12102/j.issn.1009-6493.2022.06.028
[46] Kirkwood NK, O'Reilly M, Derudas M, et al. D-tubocurarine and berbamine: alkaloids that are permeant blockers of the hair cell's mechano-electrical transducer channel and protect from aminoglycoside toxicity[J]. Front Cell Neurosci, 2017 5(11):262. doi:10.3389/fncel.2017.00262
[47] Kitcher SR, Kirkwood NK, Camci ED, et al. ORC-13661 protects sensory hair cells from aminoglycoside and cisplatin ototoxicity[J]. JCI Insight, 2019, 4(15): 126764. doi:10.1172/jci.insight.126764
[48] Mostafa BE, Tawfik S, Hefnawi NG, et al. The role of deferoxamine in the prevention of gentamicin ototoxicity: a histological and audiological study in Guinea pigs[J]. Acta Otolaryngol, 2007, 127(3): 234-239. doi:10.1080/00016480600794495
[49] Kim HJ, Lee JO, Kim JS. Protective effects of deferoxamine on vestibulotoxicity in gentamicin-induced bilateral vestibulopathy rat model[J]. Front Neurol, 2021,12:650752. doi:10.3389/fneur.2021.650752
[50] Somda??塂 MA, Korkmaz F, Gürgen SG, et al. N-acetylcysteine prevents gentamicin ototoxicity in a rat model[J]. J Int Adv Otol, 2015, 11(1): 12-18. doi:10.5152/iao.2015.650
[51] Campbell KC, Martin SM, Meech RP, et al. D-methionine(D-met)significantly reduces kanamycin-induced ototoxicity in pigmented Guinea pigs[J]. Int J Audiol, 2016, 55(5): 273-278. doi:10.3109/14992027.2016.1143980
[52] Aladag I, Guven M, Songu M. Prevention of gentamicin ototoxicity with N-acetylcysteine and vitamin A[J]. J Laryngol Otol, 2016, 130(5): 440-446. doi:10.1017/S0022215116000992
[53] Fetoni AR, Eramo SL, Rolesi R, et al. Antioxidant treatment with coenzyme Q-ter in prevention of gentamycin ototoxicity in an animal model[J]. Acta Otorhinolaryngol Ital, 2012, 32(2): 103-110. doi:10.3389/fneur.2021.650752
[54] He Y, Li W, Zheng Z, et al. Inhibition of Protein arginine methyltransferase 6 reduces reactive oxygen species production and attenuates aminoglycoside- and cisplatin-induced hair cell death[J]. Theranostics, 2020, 10(1): 133-150. doi:10.7150/thno.37362
[55] Matsui JI, Gale JE, Warchol ME. Critical signaling events during the aminoglycoside-induced death of sensory hair cells in vitro[J]. J Neurobiol, 2004, 61(2): 250-266. doi:10.1002/neu.20054
[56] Eshraghi AA, Wang J, Adil E, et al. Blocking c-Jun-N-terminal kinase signaling can prevent hearing loss induced by both electrode insertion trauma and neomycin ototoxicity[J]. Hear Res, 2007, 226(1/2): 168-177. doi:10.1016/j.heares.2006.09.008
[57] Knauer SK, Heinrich UR, Bier C, et al. An otoprotective role for the apoptosis inhibitor protein survivin[J]. Cell Death Dis, 2010 1(7):e51. doi:10.1038/cddis.2010.25
[58] Ishikawa M, García-Mateo N, Cusak A, et al. Lower ototoxicity and absence of hidden hearing loss point to gentamicin C1a and apramycin as promising antibiotics for clinical use[J]. Sci Rep, 2019, 9(1): 2410. doi:10.1038/s41598-019-38634-3
[59] Di Bonaventura G, Lupetti V, Verginelli F, et al. Repurposing the veterinary antibiotic apramycin for antibacterial and antibiofilm activity against Pseudomonas aeruginosa from cystic fibrosis patients[J]. Front Microbiol, 2022, 12:801152. doi:10.3389/fmicb.2021.801152
[60] Zada SL, Baruch BB, Simhaev L, et al. Chemical modifications reduce auditory cell damage induced by aminoglycoside antibiotics[J]. J Am Chem Soc, 2020, 142(6): 3077-3087. doi:10.1021/jacs.9b12420
[61] Huth ME, Han KH, Sotoudeh K, et al. Designer aminoglycosides prevent cochlear hair cell loss and hearing loss[J]. J Clin Invest, 2015, 125(2): 583-592. doi:10.1172/JCI77424
[62] Wang H, Zhang Z, Xiong F, et al. Isolation and structure characterization of related impurities in etimicin sulfate by LC/ESI-MS(n)and NMR[J]. J Pharm Biomed Anal, 2011, 55(5): 902-907. doi:10.1016/j.jpba.2011.03.005
[63] Chaudhary M, Kesava Naidu G, Kumar S, et al. Comparative antibacterial activity of a novel semisynthetic antibiotic: etimicin sulphate and other aminoglycosides[J]. World J Microbiol Biotechnol, 2012, 28(12): 3365-3371. doi:10.1007/s11274-012-1148-5
[64] Yao L, Zhang JW, Chen B, et al. Mechanisms and pharmacokinetic/pharmacodynamic profiles underlying the low nephrotoxicity and ototoxicity of etimicin[J]. Acta Pharmacol Sin, 2020, 41(6): 866-878. doi:10.1038/s41401-019-0342-5
[65] Shao W, Zhong D, Jiang H, et al. A new aminoglycoside etimicin shows low nephrotoxicity and ototoxicity in zebrafish embryos[J]. J Appl Toxicol, 2021, 41(7): 1063-1075. doi:10.1002/jat.4093
[66] Sullivan ME, Song Y, Greenhouse R, et al. Dissociating antibacterial from ototoxic effects of gentamicin C-subtypes[J]. Proc Natl Acad Sci USA, 2020, 117(51): 32423-32432. doi:10.1073/pnas.2013065117
[67] Guo J, Chai R, Li H, et al. Protection of hair cells from ototoxic drug-induced hearing loss[J]. Adv Exp Med Biol, 2019,1130:17-36. doi:10.1007/978-981-13-6123-4_2
[1] 王茜,刘娜,王少鹏. Leber特发性星芒状视神经视网膜炎1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 106-110.
[2] 朱晶,张睿,赵媛,李炀,樊孟耘,赵昱. 内镜下低温等离子消融治疗不同炎症分期先天性梨状窝瘘45例[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 24-29.
[3] 杨琨, 陈利娟, 何小丹, 刘志奇, 沙素华. 卡那霉素和2-羟丙基-β-环糊精耳毒性的比较研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 6-11.
[4] 马静远, 武天义, 孙占伟, 王卫卫, 李世超, 王广科. 鼻腔鼻窦内翻性乳头状瘤与外周血炎症标志物的相关性研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 35-39.
[5] 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14.
[6] 梁旭,史丽. 慢性鼻窦炎生物靶向药物治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 30-35.
[7] 石帅,郑泉,程雷. 度普利尤单抗在慢性鼻窦炎伴鼻息肉治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 36-42.
[8] 黄丹怡,张婷,陈静,张薇. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83.
[9] 资昊坤,肖旭平,李云秋. 口服糖皮质激素在慢性鼻窦炎伴鼻息肉围手术期的应用现状[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 98-103.
[10] 刘真,宋西成. 细胞焦亡在变应性鼻炎中的作用机制及研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 123-129.
[11] 王娜,柴向斌. 前列腺源性ETS因子在哮喘及鼻黏膜炎性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 136-141.
[12] 刘一潼,周穗子,邱前辉. NLRP3炎症小体在慢性鼻窦炎和变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 142-146.
[13] 陈世琴,卫平存,胡云龙,胡金旺. 糖皮质激素三种不同鼻用法对鼻内镜术后黏膜转归的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 195-201.
[14] 狄宇,李莹. 干眼炎症反应机制及抗炎治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 144-150.
[15] 李化静,郝润梅,戴皓,张令,申震,权芳,邵渊. 儿茶素抑制卵清蛋白诱导的过敏性鼻炎小鼠模型炎症反应的机制研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!