山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (4): 153-159.doi: 10.6040/j.issn.1673-3770.0.2022.192

• 综述 • 上一篇    

2型固有淋巴细胞在慢性鼻窦炎中的作用及调节机制研究进展

崔宁,王云梦,杨景朴   

  1. 吉林大学第二医院 耳鼻咽喉头颈外科, 吉林 长春 130041;
  • 发布日期:2023-07-27
  • 通讯作者: 杨景朴. E-mail:jingpuyangent@163.com
  • 基金资助:
    吉林省科技厅项目(20200201517JC)

Research progress on the role and regulatory mechanism of group 2 innate lymphoid cells in chronic rhinosinusitis

CUI Ning, WANG Yunmeng, YANG Jingpu   

  1. Department of Otorhinolaryngology & Head and Neck Surgery, Second Hospital of Jilin University, Changchun 130041, Jilin, China
  • Published:2023-07-27

摘要: 慢性鼻窦炎是一种发生于鼻窦黏膜的慢性炎症疾病,主要表现为鼻塞、流涕等鼻部症状,其次是头面部胀痛、嗅觉减退或丧失,病程不少于12星期,常合并哮喘及慢性阻塞性肺疾病等呼吸道疾病。作为一种多因素病因的炎症性疾病,涉及免疫系统和上皮屏障,受微生物组群、环境和遗传因素的影响。目前其发病机制尚未明确。固有淋巴细胞是T淋巴细胞的先天对应细胞,缺乏遗传因素重组产生的适应性抗原受体。其中2型固有淋巴细胞(group 2 innate lymphoid celles, ILC2s)激活后释放大量2型细胞因子,与Th2免疫反应密切相关。论文就慢性鼻窦炎伴鼻息肉中ILC2s的作用及其调节机制,尤其是与调节性T细胞之间的相互作用进行综述。

关键词: 2型固有淋巴细胞, 鼻窦炎, 鼻息肉, Th2炎症, 调节性T细胞

Abstract: Chronic rhinosinusitis is a chronic inflammatory disease that occurs in the mucosa of the sinuses, mainly manifested by nasal symptoms such as nasal congestion and runny nose, followed by head and facial swelling, and decreased or lost sense of smell. The course of disease is no less than 12 weeks. It is often complicated with respiratory diseases such as asthma and chronic obstructive pulmonary disease. As an inflammatory disease with a multifactorial etiology, it involves the immune system and epithelial barrier and is influenced by microbiota, environmental and genetic factors. Its pathogenesis is not yet clear. Innate lymphoid cells are the innate counterparts of T lymphocytes and lack adaptive antigen receptors generated by recombination of genetic factors. Among them, group 2 innate lymphoid cells(ILC2s)release large amounts of type 2 cytokines after activation, which is closely related to Th2 inflammation. This article reviews the role of ILC2s in chronic rhinosinusitis with nasal polyps and its regulatory mechanism, especially its interaction with regulatory T cells.

Key words: Group 2 innate lymphoid cells, Sinusitis, Nasal polyps, Th2 inflammation, Regulatory T cells

中图分类号: 

  • R765.4+
[1] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(2): 81-100. doi:10.3760/cma.j.issn.1673-0860.2019.02.001
[2] Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020[J]. Rhinology, 2020, 58(Suppl S29): 1-464. doi:10.4193/Rhin20.600
[3] Cho SH, Hamilos DL, Han DH, et al. Phenotypes of chronic rhinosinusitis[J]. J Allergy Clin Immunol Pract, 2020, 8(5): 1505-1511. doi:10.1016/j.jaip.2019.12.021
[4] Lou HF, Meng YF, Piao YS, et al. Cellular phenotyping of chronic rhinosinusitis with nasal polyps[J]. Rhinology, 2016, 54(2): 150-159. doi:10.4193/Rhino15.271
[5] Stevens WW, Peters AT, Tan BK, et al. Associations between inflammatory endotypes and clinical presentations in chronic rhinosinusitis[J]. J Allergy Clin Immunol Pract, 2019, 7(8): 2812-2820.e3. doi:10.1016/j.jaip.2019.05.009
[6] Kato A, Schleimer RP, Bleier BS. Mechanisms and pathogenesis of chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2022, 149(5): 1491-1503. doi:10.1016/j.jaci.2022.02.016
[7] Wang XD, Zhang N, Bo MY, et al. Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania[J]. J Allergy Clin Immunol, 2016, 138(5): 1344-1353. doi:10.1016/j.jaci.2016.05.041
[8] Eifan AO, Durham SR. Pathogenesis of rhinitis[J]. Clin Exp Allergy, 2016, 46(9): 1139-1151. doi:10.1111/cea.12780
[9] Vivier E, Artis D, Colonna M, et al. Innate lymphoid cells: 10 years on[J]. Cell, 2018, 174(5): 1054-1066. doi:10.1016/j.cell.2018.07.017
[10] Spits H, di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling[J]. Nat Immunol, 2011, 12(1): 21-27. doi:10.1038/ni.1962
[11] Ebbo M, Crinier A, Vély F, et al. Innate lymphoid cells: major players in inflammatory diseases[J]. Nat Rev Immunol, 2017, 17(11): 665-678. doi:10.1038/nri.2017.86
[12] Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity[J]. J Allergy Clin Immunol, 2015, 135(3): 626-635. doi:10.1016/j.jaci.2014.11.001
[13] Bernink JH, Peters CP, Munneke M, et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues[J]. Nat Immunol, 2013, 14(3): 221-229. doi:10.1038/ni.2534
[14] Morita H, Moro K, Koyasu S. Innate lymphoid cells in allergic and nonallergic inflammation[J]. J Allergy Clin Immunol, 2016, 138(5): 1253-1264. doi:10.1016/j.jaci.2016.09.011
[15] Eberl G, Marmon S, Sunshine MJ, et al. An essential function for the nuclear receptor RORgamma(t)in the generation of fetal lymphoid tissue inducer cells[J]. Nat Immunol, 2004, 5(1): 64-73. doi:10.1038/ni1022
[16] Fort MM, Cheung J, Yen D, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo[J]. Immunity, 2001, 15(6): 985-995. doi:10.1016/s1074-7613(01)00243-6
[17] Neill DR, Wong SH, Bellosi A, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity[J]. Nature, 2010, 464(7293): 1367-1370. doi:10.1038/nature08900
[18] Mjösberg JM, Trifari S, Crellin NK, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161[J]. Nat Immunol, 2011, 12(11): 1055-1062. doi:10.1038/ni.2104
[19] Walford HH, Lund SJ, Baum RE, et al. Increased ILC2s in the eosinophilic nasal polyp endotype are associated with corticosteroid responsiveness[J]. Clin Immunol, 2014, 155(1): 126-135. doi:10.1016/j.clim.2014.09.007
[20] Miljkovic D, Bassiouni A, Cooksley C, et al. Association between group 2 innate lymphoid cells enrichment, nasal polyps and allergy in chronic rhinosinusitis[J]. Allergy, 2014, 69(9): 1154-1161. doi:10.1111/all.12440
[21] Stevens WW, Kato A. Group 2 innate lymphoid cells in nasal polyposis[J]. Ann Allergy Asthma Immunol, 2021, 126(2): 110-117. doi:10.1016/j.anai.2020.08.001
[22] Tojima I, Kouzaki H, Shimizu S, et al. Group 2 innate lymphoid cells are increased in nasal polyps in patients with eosinophilic chronic rhinosinusitis[J]. Clin Immunol, 2016, 170: 1-8. doi:10.1016/j.clim.2016.07.010
[23] Hopkins C. Chronic rhinosinusitis with nasal polyps[J]. N Engl J Med, 2019, 381(1): 55-63. doi:10.1056/NEJMcp1800215
[24] Oliphant CJ, Hwang YY, Walker JA, et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+)T cells potentiates type 2 immunity and promotes parasitic helminth expulsion[J]. Immunity, 2014, 41(2): 283-295. doi:10.1016/j.immuni.2014.06.016
[25] Pelly VS, Kannan Y, Coomes SM, et al. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection[J]. Mucosal Immunol, 2016, 9(6): 1407-1417. doi:10.1038/mi.2016.4
[26] Halim TY, Steer CA, Mathä L, et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation[J]. Immunity, 2014, 40(3): 425-435. doi:10.1016/j.immuni.2014.01.011
[27] Wu JQ, Cui YL, Zhu WW, et al. Critical role of OX40/OX40L in ILC2-mediated activation of CD4+T cells during respiratory syncytial virus infection in mice[J]. Int Immunopharmacol, 2019, 76: 105784. doi:10.1016/j.intimp.2019.105784
[28] Halim TYF, Rana BMJ, Walker JA, et al. Tissue-restricted adaptive type 2 immunity is orchestrated by expression of the costimulatory molecule OX40L on group 2 innate lymphoid cells[J]. Immunity, 2018, 48(6): 1195-1207.e6. doi:10.1016/j.immuni.2018.05.003
[29] Shi LL, Song J, Xiong P, et al. Disease-specific T-helper cell polarizing function of lesional dendritic cells in different types of chronic rhinosinusitis with nasal polyps[J]. Am J Respir Crit Care Med, 2014, 190(6): 628-638. doi:10.1164/rccm.201402-0234OC
[30] Maazi H, Patel N, Sankaranarayanan I, et al. ICOS: ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity[J]. Immunity, 2015, 42(3): 538-551. doi:10.1016/j.immuni.2015.02.007
[31] Schwartz C, Khan AR, Floudas A, et al. ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control[J]. J Exp Med, 2017, 214(9): 2507-2521. doi:10.1084/jem.20170051
[32] Ho J, Bailey M, Zaunders J, et al. Group 2 innate lymphoid cells(ILC2s)are increased in chronic rhinosinusitis with nasal polyps or eosinophilia[J]. Clin Exp Allergy, 2015, 45(2): 394-403. doi:10.1111/cea.12462
[33] Patel NN, Kohanski MA, Maina IW, et al. Solitary chemosensory cells producing interleukin-25 and group-2 innate lymphoid cells are enriched in chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol, 2018. doi:10.1002/alr.22142
[34] Ikutani M, Ogawa S, Yanagibashi T, et al. Elimination of eosinophils using anti-IL-5 receptor alpha antibodies effectively suppresses IL-33-mediated pulmonary arterial hypertrophy[J]. Immunobiology, 2018, 223(6/7): 486-492. doi:10.1016/j.imbio.2017.12.002
[35] Turner JE, Morrison PJ, Wilhelm C, et al. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation[J]. J Exp Med, 2013, 210(13): 2951-2965. doi:10.1084/jem.20130071
[36] Shaw JL, Fakhri S, Citardi MJ, et al. IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps[J]. Am J Respir Crit Care Med, 2013, 188(4): 432-439. doi:10.1164/rccm.201212-2227OC
[37] Toki S, Goleniewska K, Zhang J, et al. TSLP and IL-33 reciprocally promote each other's lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation[J]. Allergy, 2020, 75(7): 1606-1617. doi:10.1111/all.14196
[38] Wong CK, Li PW, Lam CWK. Intracellular JNK, p38 MAPK and NF-kappaB regulate IL-25 induced release of cytokines and chemokines from costimulated T helper lymphocytes[J]. Immunol Lett, 2007, 112(2): 82-91. doi:10.1016/j.imlet.2007.07.002
[39] Ogasawara N, Poposki JA, Klingler AI, et al. Role of RANK-L as a potential inducer of ILC2-mediated type 2 inflammation in chronic rhinosinusitis with nasal polyps[J]. Mucosal Immunol, 2020, 13(1): 86-95. doi:10.1038/s41385-019-0215-8
[40] Ohne Y, Silver JS, Thompson-Snipes L, et al. Erratum: IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity[J]. Nat Immunol, 2016, 17(8): 1005. doi:10.1038/ni0816-1005a
[41] Ogasawara N, Poposki JA, Klingler AI, et al. TNF induces production of type 2 cytokines in human group 2 innate lymphoid cells[J]. J Allergy Clin Immunol, 2020, 145(1): 437-440.e8. doi:10.1016/j.jaci.2019.09.001
[42] Salimi M, Stöger L, Liu W, et al. Cysteinyl leukotriene E4 activates human group 2 innate lymphoid cells and enhances the effect of prostaglandin D2 and epithelial cytokines[J]. J Allergy Clin Immunol, 2017, 140(4): 1090-1100.e11. doi:10.1016/j.jaci.2016.12.958
[43] Kato A. Group 2 innate lymphoid cells in airway diseases[J]. Chest, 2019, 156(1): 141-149. doi:10.1016/j.chest.2019.04.101
[44] Knipfer L, Schulz-Kuhnt A, Kindermann M, et al. A CCL1/CCR8-dependent feed-forward mechanism drives ILC2 functions in type 2-mediated inflammation[J]. J Exp Med, 2019, 216(12): 2763-2777. doi:10.1084/jem.20182111
[45] Hurrell BP, Shafiei Jahani P, Akbari O. Social networking of group two innate lymphoid cells in allergy and asthma[J]. Front Immunol, 2018, 9: 2694. doi:10.3389/fimmu.2018.02694
[46] Duerr CU, McCarthy CDA, Mindt BC, et al. Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells[J]. Nat Immunol, 2016, 17(1): 65-75. doi:10.1038/ni.3308
[47] Morita H, Kubo T, Rückert B, et al. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid[J]. J Allergy Clin Immunol, 2019, 143(6): 2190-2201.e9. doi:10.1016/j.jaci.2018.12.1018
[48] Lee GR. The balance of Th17 versus treg cells in autoimmunity[J]. Int J Mol Sci, 2018, 19(3): 730. doi:10.3390/ijms19030730
[49] Molofsky AB, van Gool F, Liang HE, et al. Interleukin-33 and interferon-γ counter-regulate group 2 innate lymphoid cell activation during immune perturbation[J]. Immunity, 2015, 43(1): 161-174. doi:10.1016/j.immuni.2015.05.019
[50] Rauber S, Luber M, Weber S, et al. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells[J]. Nat Med, 2017, 23(8): 938-944. doi:10.1038/nm.4373
[51] Rigas D, Lewis G, Aron JL, et al. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction[J]. J Allergy Clin Immunol, 2017, 139(5): 1468-1477.e2. doi:10.1016/j.jaci.2016.08.034
[52] Aron JL, Akbari O. Regulatory T cells and type 2 innate lymphoid cell-dependent asthma[J]. Allergy, 2017, 72(8): 1148-1155. doi:10.1111/all.13139
[53] Noval Rivas M, Burton OT, Oettgen HC, et al. IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function[J]. J Allergy Clin Immunol, 2016, 138(3): 801-811.e9. doi:10.1016/j.jaci.2016.02.030
[54] Sharma S, Watanabe S, Sivam A, et al. Peripheral blood and tissue T regulatory cells in chronic rhinosinusitis[J]. Am J Rhinol Allergy, 2012, 26(5): 371-379. doi:10.2500/ajra.2012.26.3800
[55] Shi J, Fan Y, Xu R, et al. Characterizing T-cell phenotypes in nasal polyposis in Chinese patients[J]. J Investig Allergol Clin Immunol, 2009, 19(4): 276-282
[56] van Bruaene N, Pérez-Novo CA, Basinski TM, et al. T-cell regulation in chronic paranasal sinus disease[J]. J Allergy Clin Immunol, 2008, 121(6): 1435-1441, 1441.e1-3. doi:10.1016/j.jaci.2008.02.018
[57] Li Y, Wang W, Ying S, et al. A potentia role of group 2 innate lymphoid cells in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Allergy Asthma Immunol Res, 2021, 13(3): 363-374. doi:10.4168/aair.2021.13.3.363
[1] 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14.
[2] 熊攀辉,沈暘,杨玉成. 基于表型和内在型的慢性鼻窦炎诊治进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 15-19.
[3] 姚爽,娄鸿飞. 慢性鼻窦炎的内在型研究进展及精准医疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 20-29.
[4] 梁旭,史丽. 慢性鼻窦炎生物靶向药物治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 30-35.
[5] 石帅,郑泉,程雷. 度普利尤单抗在慢性鼻窦炎伴鼻息肉治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 36-42.
[6] 王欢,胡俐,余洪猛. 慢性鼻窦炎相关嗅觉功能障碍研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 43-49.
[7] 宜若男,陈福权. 嗜酸性粒细胞与嗅觉功能障碍[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 50-55.
[8] 谷钰,万鑫,肖自安. 中性粒细胞和嗜酸性粒细胞在慢性鼻窦炎中的相互影响及临床治疗思考[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 56-63.
[9] 林海,朱莹,张维天. 慢性鼻窦炎发病中离子通道作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 64-70.
[10] 乔新杰,赵玉林. 慢性鼻窦炎中上皮间质转化信号转导通路及其他相关因子的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 71-77.
[11] 黄丹怡,张婷,陈静,张薇. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83.
[12] 李佳倪,朱冬冬,孟粹达. 表观遗传学在慢性鼻窦炎伴鼻息肉发病机制中的作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 84-91.
[13] 于龙刚,姜彦. 鼻细菌微生物组与慢性鼻窦炎伴鼻息肉相关性的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 92-97.
[14] 资昊坤,肖旭平,李云秋. 口服糖皮质激素在慢性鼻窦炎伴鼻息肉围手术期的应用现状[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 98-103.
[15] 曹轩,肖旭平,李云秋. 透明质酸在慢性鼻窦炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 104-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!