山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (5): 99-106.doi: 10.6040/j.issn.1673-3770.0.2022.278

• 论著 • 上一篇    下一篇

腺样囊性癌关键基因表达的生物信息学分析

郝红1,陈钢2,王林娥2   

  1. 1.中国核工业北京401医院 耳鼻喉科, 北京 102413;
    2.首都医科大学附属北京友谊医院 耳鼻咽喉头颈外科, 北京 100050
  • 发布日期:2023-10-13
  • 通讯作者: 陈钢. E-mail:twmcgcyx@126.com

Key candidate genes associated with the molecular mechanisms of adenoid cystic carcinoma identified by bioinformatics

HAO Hong1, CHEN Gang2, WANG Lin’e2   

  1. 1. Department of Otolaryngology, The 401 Hospital of the China Nuclear Industry, Beijing 102413, China2. Department of Otorhinolaryngology & Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
  • Published:2023-10-13

摘要: 目的 研究使用生物信息学的方法来获得腺样囊性癌(adenoid cystic carcinoma, ACC)相关的关键基因,探寻其病因和发病机制。 方法 通过GEO数据库中GSE36820和GSE88804数据集获取腺样囊性癌的基因表达谱,筛选出腺样囊性癌组织与正常涎膜组织共同差异表达基因(DEGs),对DEGs进行基因本体论(GO)分析、京都基因与基因组百科全书(KEGG)信号通路分析,并通过String在线软件和Cytoscape软件构建DEGs蛋白互作网络,经cytoHubba获得关键基因,在GSE59702数据集对关键基因表达进行验证。 结果 GO分析在生物过程中包括多细胞生物的体内平衡、抗菌体液反应、视网膜内稳态;KEGG通路富集于唾液分泌、PPAR信号通路和酪氨酸代谢;GSEA分析基因在细胞循环有丝分裂、TP53介导的转录调节、Rho家族的鸟苷三磷酸酶介导的信号、肿瘤通路和M期富集。在PPI网络筛选出前10个关键基因,对关键基因表达验证显示,DTL、CENPU、BUB1B、ANLN、CENPF、TOP2A的mRNA表达水平在肿瘤组织中显著升高,而CDK1、NUSAP1、CCNB2和KIF11的mRNA表达无统计学意义。 结论 本研究中发现的关键基因可能参与ACC的发病机制,为获得新的诊断方法和治疗手段提供研究方向。

关键词: 基因, 腺样囊性癌, 生物信息学, 基因表达谱, 生物指标

Abstract: Objective This paper used a bioinformatics approach to identify key genes associated with adenoid cystic carcinoma(ACC)to explore the etiology and pathogenesis. Methods The microarray datasets GSE36820 and GSE88804 were obtained from the Gene Expression Omnibus database(GEO). Common differentially expressed genes(DEGs)between ACC and normal tissues were identified. Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery(DAVID). A protein-protein interaction(PPI)network incorporating the discovered DEGs was constructed using String online software and Cytoscape software. Key genes were obtained by cytoHubba of Cytoscape. The mRNA level expression of key genes was validated using the GSE59702 dataset. Results GO analysis revealed that the DEGs were enriched in biological processes including multicellular organismal homeostasis, antimicrobial humoral response, and retina homeostasis. KEGG pathway analysis indicated that the DEGs were enriched in salivary secretion, PPAR signaling, and tyrosine metabolism. GSEA enrichment analysis found genes that were enriched in cell cycle mitosis, TP53-mediated transcriptional regulation, Rho family guanosine triphosphatase mediated signaling, tumor pathways, and mitosis. The mRNA expression levels of DTL, CENPU, BUB1B, ANLN, CENPF and TOP2A were significantly increased in tumor tissues. Conclusion The key candidate genes identified in the present study may be involved in ACC growth and pathogenesis, and offer new research directions in the quest for therapeutic targets and diagnostic markers.

Key words: Genes, Adenoid cystic carcinoma, Bioinformatics, Gene expression profiles, Biomarkers

中图分类号: 

  • R739.6
[1] Atallah S, Marc M, Schernberg A, et al. Beyond surgical treatment in adenoid cystic carcinoma of the head and neck: a literature review[J]. Cancer Manag Res, 2022, 14: 1879-1890. doi:10.2147/CMAR.S355663
[2] Garg M, Tudor-Green B, Bisase B. Current thinking in the management of adenoid cystic carcinoma of the head and neck[J]. Br J Oral Maxillofac Surg, 2019, 57(8): 716-721. doi:10.1016/j.bjoms.2019.07.021
[3] Chen W, Zhang HL, Shao XJ, et al. Gene expression profile of salivary adenoid cystic carcinoma associated with perineural invasion[J]. Tohoku J Exp Med, 2007, 212(3): 319-334. doi:10.1620/tjem.212.319
[4] Stenman G, Persson F, Andersson MK. Diagnostic and therapeutic implications of new molecular biomarkers in salivary gland cancers[J]. Oral Oncol, 2014, 50(8): 683-690. doi:10.1016/j.oraloncology.2014.04.008
[5] Bhaijee F, Pepper DJ, Pitman KT, et al. New developments in the molecular pathogenesis of head and neck tumors: a review of tumor-specific fusion oncogenes in mucoepidermoid carcinoma, adenoid cystic carcinoma, and NUT midline carcinoma[J]. Ann Diagn Pathol, 2011, 15(1): 69-77. doi:10.1016/j.anndiagpath.2010.12.001
[6] Andersson MK, Mangiapane G, Nevado PT, et al. ATR is a MYB regulated gene and potential therapeutic target in adenoid cystic carcinoma[J]. Oncogenesis, 2020, 9(1): 5. doi:10.1038/s41389-020-0194-3
[7] Yue HT, Cai Y, Song YL, et al. Elevated TARP promotes proliferation and metastasis of salivary adenoid cystic carcinoma[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2017, 123(4): 468-476. doi:10.1016/j.oooo.2016.11.023
[8] Ding LC, Huang XY, Zheng FF, et al. FZD2 inhibits the cell growth and migration of salivary adenoid cystic carcinomas[J]. Oncol Rep, 2016, 35(2): 1006-1012. doi:10.3892/or.2015.3811
[9] Guan HJ, Tan J, Zhang FY, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12[J]. Histopathology, 2015, 66(6): 781-790. doi:10.1111/his.12519
[10] Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets: update[J]. Nucleic Acids Res, 2013, 41(Database issue): 991-995. doi:10.1093/nar/gks1193
[11] Andersson MK, Afshari MK, Andrén Y, et al. Targeting the oncogenic transcriptional regulator MYB in adenoid cystic carcinoma by inhibition of IGF1R/AKT signaling[J]. J Natl Cancer Inst, 2017, 109(9). doi:10.1093/jnci/djx017
[12] Gao RL, Cao CX, Zhang M, et al. A unifying gene signature for adenoid cystic cancer identifies parallel MYB-dependent and MYB-independent therapeutic targets[J]. Oncotarget, 2014, 5(24): 12528-12542. doi:10.18632/oncotarget.2985
[13] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc, 2009, 4(1): 44-57. doi:10.1038/nprot.2008.211
[14] Liberzon A, Birger C, Thorvaldsdóttir H, et al. The Molecular Signatures Database(MSigDB)hallmark gene set collection[J]. Cell Syst, 2015, 1(6): 417-425. doi:10.1016/j.cels.2015.12.004
[15] Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res, 2019, 47(1): 607-613. doi:10.1093/nar/gky1131
[16] Otasek D, Morris JH, Bouças J, et al. Cytoscape Automation: empowering workflow-based network analysis[J]. Genome Biol, 2019, 20(1): 185. doi:10.1186/s13059-019-1758-4
[17] Gu ZG, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data[J]. Bioinformatics, 2016, 32(18): 2847-2849. doi:10.1093/bioinformatics/btw313
[18] 冯剑, 周涵, 宋圣花, 等. 鼻腔鼻窦腺样囊性癌15例临床分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 87-91. doi:10.6040/j.issn.1673-3770.0.2018.545 FENG Jian, ZHOU Han, SONG Shenghua, et al. Clinical analysis of 15 cases of adenoid cystic carcinoma in the paranasal sinuses and nasal cavity[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(5): 87-91. doi:10.6040/j.issn.1673-3770.0.2018.545
[19] Liu SJ, Gu LN, Wu N, et al. Overexpression of DTL enhances cell motility and promotes tumor metastasis in cervical adenocarcinoma by inducing RAC1-JNK-FOXO1 axis[J]. Cell Death Dis, 2021, 12(10): 929. doi:10.1038/s41419-021-04179-5
[20] Luo YW, He ZW, Liu W, et al. DTL is a prognostic biomarker and promotes bladder cancer progression through regulating the AKT/mTOR axis[J]. Oxid Med Cell Longev, 2022: 3369858. doi:10.1155/2022/3369858
[21] Li J, Wang ZG, Pang LB, et al. Reduced CENPU expression inhibits lung adenocarcinoma cell proliferation and migration through PI3K/AKT signaling[J]. Biosci Biotechnol Biochem, 2019, 83(6): 1077-1084. doi:10.1080/09168451.2019.1588094
[22] Sun JB, Huang JZ, Lan J, et al. Overexpression of CENPF correlates with poor prognosis and tumor bone metastasis in breast cancer[J]. Cancer Cell Int, 2019, 19: 264. doi:10.1186/s12935-019-0986-8
[23] Chen EB, Qin X, Peng K, et al. HnRNPR-CCNB1/CENPF axis contributes to gastric cancer proliferation and metastasis[J]. Aging, 2019, 11(18): 7473-7491. doi:10.18632/aging.102254
[24] Han Y, Xu SJ, Cheng K, et al. CENPF promotes papillary thyroid cancer progression by mediating cell proliferation and apoptosis[J]. Exp Ther Med, 2021, 21(4): 401. doi:10.3892/etm.2021.9832
[25] Hirabayashi S. Immunohistochemical detection of DNA topoisomerase type II alpha and Ki-67 in adenoid cystic carcinoma and pleomorphic adenoma of the salivary gland[J]. J Oral Pathol Med, 1999, 28(3): 131-136. doi:10.1111/j.1600-0714.1999.tb02011.x
[26] Maruya SI, Shirasaki T, Nagaki T, et al. Differential expression of topoisomerase IIalpha protein in salivary gland carcinomas: histogenetic and prognostic implications[J]. BMC Cancer, 2009, 9: 72. doi:10.1186/1471-2407-9-72
[27] Kou F, Sun HF, Wu L, et al. TOP2A promotes lung adenocarcinoma cells' malignant progression and predicts poor prognosis in lung adenocarcinoma[J]. J Cancer, 2020, 11(9): 2496-2508. doi:10.7150/jca.41415
[28] Jiao CY, Feng QC, Li CX, et al. BUB1B promotes extrahepatic cholangiocarcinoma progression via JNK/c-Jun pathways[J]. Cell Death Dis, 2021, 12(1): 63. doi:10.1038/s41419-020-03234-x
[29] Wang B, Zhang XL, Li CX, et al. ANLN promotes carcinogenesis in oral cancer by regulating the PI3K/mTOR signaling pathway[J]. Head Face Med, 2021, 17(1): 18. doi:10.1186/s13005-021-00269-z
[30] Xu J, Zheng H, Yuan S, et al. Overexpression of ANLN in lung adenocarcinoma is associated with metastasis[J]. Thorac Cancer, 2019, 10(8): 1702-1709. doi:10.1111/1759-7714.13135
[31] Liu HB, Huang GJ, Luo MS. Transcriptome analyses identify hub genes and potential mechanisms in adenoid cystic carcinoma[J]. Medicine, 2020, 99(2): e18676. doi:10.1097/MD.0000000000018676
[1] 王明明,罗洋,贺少娟,张现兴,李学忠. 慢性鼻窦炎鼻息肉基底干细胞转录组生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 6-15.
[2] 张永红,张辉,王彩华,杨欣欣,吴允刚,赵玉凤,庞太忠,李晓瑜. 基于TCGA数据库构建喉鳞状细胞癌免疫相关基因预后模型及筛选靶向分子药物[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 54-62.
[3] 周一静,邹建银,易红良,吴红敏. TGFBI在头颈部鳞状细胞癌中的表达及其临床意义[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 85-95.
[4] 侯凌霄,展长翠,许安廷,范新泰,王娜. 鼻黏膜组织CD4+ T细胞参与季节性变应性鼻炎发病机制的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 96-104.
[5] 文锋,张驰,扈希昊,董冰婉,秦永,赵恩民. 喉部腺样囊性癌4例并文献复习[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 119-125.
[6] 冯仕君,王琪,赵博军. 首诊斜视的儿童石骨症1例[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 196-200.
[7] 尉慧,张明喜,孙岳,谢汝欣,成琼,李林娜,向倩倩,吴岚,陈中山. 直系兄妹PNPLA6基因突变致Boucher-Neuhäuser综合征2例并文献复习[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 88-92.
[8] 张懿,唐莉. Lowe综合征合并青光眼1例[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 93-97.
[9] 赵爽, 赵军, 薛友余, 张娟美. 1例马凡综合征患者新发FBN1基因突变分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 98-103.
[10] 李聪,李玲,刘亭彦, 陈良. 氨基糖苷类抗生素耳毒性影响因素研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 128-134.
[11] 王灵娃,王茹,房居高. 与喉乳头状瘤恶变进程及预后相关分子标志物研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 47-55.
[12] 张艳红, 李娟娟, 曾宪海, 缑灵山, 王朝霞, 魏建芳, 马芳, 邱书奇. 耳聋基因panel在耳聋基因诊断中的临床应用[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 27-34.
[13] 刘厚军,张倩,程友,薛飞,许莉,吴明海. 慢性鼻窦炎伴双侧鼻息肉的发病与RANTES基因多态性的关系分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 165-170.
[14] 李琳,高正文,崔楠,孙健平,黄贤明,崔静. 儿童慢性鼻窦炎基因表达谱的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 171-180.
[15] 齐雯雯,陈鲁秋,贾涛,陈雪梅,张杰,张皓,金鹏,张虎. 复发性喉乳头状瘤中潜在生物学标志物的筛选及生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 75-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!