山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (5): 6-15.doi: 10.6040/j.issn.1673-3770.0.2022.246

• 论著 • 上一篇    下一篇

慢性鼻窦炎鼻息肉基底干细胞转录组生物信息学分析

王明明,罗洋,贺少娟,张现兴,李学忠   

  1. 山东大学齐鲁医院 耳鼻咽喉科, 山东 济南 250012
  • 发布日期:2023-10-13
  • 通讯作者: 李学忠. E-mail:lxzebyh@163.com

Bioinformatic analysis of the transcriptome of basal stem cells of individuals with chronic rhinosinusitis with nasal polyps

WANG Mingming, LUO Yang, HE Shaojuan, ZHANG Xianxing, LI Xuezhong   

  1. Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2023-10-13

摘要: 目的 通过生物信息学技术对慢性鼻窦炎鼻息肉基底干细胞增殖分化过程中的差异表达基因分析,为慢性鼻窦炎鼻息肉上皮屏障损伤机制及治疗提供新的思路和方向。 方法 从基因表达数据库(GEO数据库)下载慢性鼻窦炎鼻息肉基底干细胞增殖分化转录组芯片数据集,使用R软件构建加权基因共表达网络分析(WGCNA)网络,筛选与正常对照组间与疾病相关的差异表达基因,通过网络在线工具DAVID进行差异基因的基因本体论(GO)分析和京都基因与基因组百科全书(KEGG)通路富集分析,通过STRING数据库构建差异表达基因的蛋白相互作用网络,并应用Cytoscape中的MCODE插件对蛋白相互作用网络进行分析。最后,使用NetworkAnalys整合转录因子数据库构建核心基因的转录因子网络。 结果 研究发现基底干细胞在慢性鼻窦炎伴鼻息肉组与正常对照组间共有175个与疾病相关的差异表达基因(P<0.05,∣logFC∣>1)。GO分析和KEGG通路分析显示,这些差异基因主要富集在内肽酶活性的负调控、丝氨酸型内肽酶抑制剂活性和Wnt信号通路等。通过蛋白相互作用网络的构建及分析,筛选出IVLSPRR2A等核心基因,它们均在基底干细胞分化过程中上调,且之间存在相互作用。GSEA分析表明,β-丙氨酸代谢可能参与慢性鼻窦炎鼻息肉的致病机制。此外,分析显示转录因子GATA2在基底干细胞分化过程中发挥关键作用结论〓IVL、SPRR2AGATA2转录因子可能参与了慢性鼻窦炎鼻息肉上皮屏障的损伤机制,内肽酶活性抑制可能是上皮屏障损伤的关键因素,此研究为进一步深入理解慢性鼻窦炎鼻息肉上皮屏障损伤的生物学机制及治疗提供了新思路。

关键词: 慢性鼻窦炎, 上皮屏障, 基底干细胞, 生物信息学

Abstract: Objective The differentially expressed genes(DEGs)involved in the proliferation and differentiation of basal stem cells(BSCs)of individuals with chronic rhinosinusitis with nasal polyps(CRSwNP)were analyzed using bioinformatics to identify the mechanisms underlying the epithelial barrier damage in CRSwNP and to gain insights for potential treatment strategies. Methods The transcriptome chip microarray dataset of the proliferation and differentiation of BSCs of nasal polyps was downloaded from the gene expression omnibus(GEO)database. R software was then used for weighted gene co-expression network analysis(WGCNA)to build networks and screen disease-associated genes on the basis of their differential expression between the CRSwNP group and the normal control group, and the online tool DAVID was used to perform gene ontology(GO)analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment of the DEGs. A protein interaction network of the DEGs was constructed using the STRING database and analyzed by applying the MCODE plugin in Cytoscape software. Finally, a transcription factor network of core genes was constructed using the NetworkAnalyst tool and by integrating the transcription factor database. Results This study found that a total of 175 disease-associated genes showing differential expression between the BSC of the CRSwNP and normal control groups(P<0.05, ∣logFC∣>1). GO and KEGG pathway analysis revealed that these DEGs were mainly enriched in the negative regulation of endopeptidase activity, serine-type endopeptidase inhibitor activity, and the Wnt signaling pathway. Analysis of the constructed protein interaction network was performed to identify core genes such as IVL and SPRR2A. These genes were all upregulated during the differentiation of BSCs, and they were found to interact with each other. Furthermore, this analysis revealed that the transcription factor GATA2 plays a critical role in the differentiation of BSCs. Conclusion IVL, SPRR2A, and GATA2 may be involved in the mechanism through which the epithelial barrier is damaged in CRSwNP. Inhibition of endopeptidase activity may be the key mechanism involved in the epithelial barrier damage. This study provides new insights into the biological mechanism underlying the epithelial barrier damage in CRSwNP and our findings could help develop a treatment strategy for CRSwNP.

Key words: Chronic sinusitis, Epithelial barrier, Basal stem cells, Bioinformatics

中图分类号: 

  • R765.4+1
[1] DeConde AS, Mace JC, Levy JM, et al. Prevalence of polyp recurrence after endoscopic sinus surgery for chronic rhinosinusitis with nasal polyposis[J]. Laryngoscope, 2017, 127(3): 550-555. doi:10.1002/lary.26391
[2] 黄丹怡, 张婷, 陈静, 等. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83, 91. doi: 10.6040/j.issn.1673-3770.0.2021.583 HUANG Danyi, ZHANG Ting, CHEN Jing, et al. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83, 91. doi: 10.6040/j.issn.1673-3770.0.2021.583
[3] Kern RC, Conley DB, Walsh W, et al. Perspectives on the etiology of chronic rhinosinusitis: an immune barrier hypothesis[J]. Am J Rhinol, 2008, 22(6): 549-559. doi:10.2500/ajr.2008.22.3228
[4] Rock JR, Randell SH, Hogan BLM. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling[J]. Dis Model Mech, 2010, 3(9/10): 545-556. doi:10.1242/dmm.006031
[5] Zhao XN, Yu FG, Li CW, et al. The use of nasal epithelial stem/progenitor cells to produce functioning ciliated cells in vitro[J]. Am J Rhinol Allergy, 2012, 26(5): 345-350. doi:10.2500/ajra.2012.26.3794
[6] Chauché C, McSorley HJ. Basal instinct: persistence of barrier dysfunction[J]. Immunity, 2018, 49(4): 590-592. doi:10.1016/j.immuni.2018.09.022
[7] Callejas-Díaz B, Fernandez G, Fuentes M, et al. Integrated mRNA and microRNA transcriptome profiling during differentiation of human nasal polyp epithelium reveals an altered ciliogenesis[J]. Allergy, 2020, 75(10): 2548-2561. doi:10.1111/all.14307
[8] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008, 9: 559. doi:10.1186/1471-2105-9-559
[9] Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res, 2019, 47(D1): D607-D613. doi:10.1093/nar/gky1131
[10] Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11): 2498-2504. doi:10.1101/gr.1239303
[11] Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci USA, 2005, 102(43): 15545-15550. doi:10.1073/pnas.0506580102
[12] Baldwin AS Jr. Series introduction: the transcription factor NF-kappaB and human disease[J]. J Clin Invest, 2001, 107(1): 3-6. doi:10.1172/JCI11891
[13] Xia JG, Gill EE, Hancock REW. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data[J]. Nat Protoc, 2015, 10(6): 823-844. doi:10.1038/nprot.2015.052
[14] Laudien M, Dressel S, Harder J, et al. Differential expression pattern of antimicrobial peptides in nasal mucosa and secretion[J]. Rhinology, 2011, 49(1): 107-111. doi:10.4193/Rhino10.036
[15] Lee JT, Jansen M, Yilma AN, et al. Antimicrobial lipids: novel innate defense molecules are elevated in sinus secretions of patients with chronic rhinosinusitis[J]. Am J Rhinol Allergy, 2010, 24(2): 99-104. doi:10.2500/ajra.2010.24.3444
[16] Schleimer RP, Kato A, Kern R, et al. Epithelium: at the interface of innate and adaptive immune responses[J]. J Allergy Clin Immunol, 2007, 120(6): 1279-1284. doi:10.1016/j.jaci.2007.08.046
[17] Eloy P, Poirrier AL, de Dorlodot C, et al. Actual concepts in rhinosinusitis: a review of clinical presentations, inflammatory pathways, cytokine profiles, remodeling, and management[J]. Curr Allergy Asthma Rep, 2011, 11(2): 146-162. doi:10.1007/s11882-011-0180-0
[18] Proud D, Leigh R. Epithelial cells and airway diseases[J]. Immunol Rev, 2011, 242(1): 186-204. doi:10.1111/j.1600-065X.2011.01033.x
[19] Yan Y, Gordon WM, Wang DY. Nasal epithelial repair and remodeling in physical injury, infection, and inflammatory diseases[J]. Curr Opin Otolaryngol Head Neck Surg, 2013, 21(3): 263-270. doi:10.1097/MOO.0b013e32835f80a0
[20] van Bruaene N, Bachert C. Tissue remodeling in chronic rhinosinusitis[J]. Curr Opin Allergy Clin Immunol, 2011, 11(1): 8-11. doi:10.1097/ACI.0b013e32834233ef
[21] Lan F, Zhang N, Holtappels G, et al. Staphylococcus aureus induces a mucosal type 2 immune response via epithelial cell-derived cytokines[J]. Am J Respir Crit Care Med, 2018, 198(4): 452-463. doi:10.1164/rccm.201710-2112OC
[22] 于龙刚, 姜彦. 鼻细菌微生物组与慢性鼻窦炎伴鼻息肉相关性的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 92-97. doi: 10.6040/j.issn.1673-3770.1.2021.576 YU Longgang, JIANG Yan. Research progress on the correlation between nasal bacterial microbiome and chronic rhinosinusitis with nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 92-97. doi: 10.6040/j.issn.1673-3770.1.2021.576
[23] Zhao XN, Yu FG, Li CW, et al. The use of nasal epithelial stem/progenitor cells to produce functioning ciliated cells in vitro[J]. Am J Rhinol Allergy, 2012, 26(5): 345-350. doi:10.2500/ajra.2012.26.3794
[24] Hajj R, Baranek T, le Naour R, et al. Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties[J]. Stem Cells, 2007, 25(1): 139-148. doi:10.1634/stemcells.2006-0288
[25] de Borja Callejas F, Martínez-Antón A, Alobid I, et al. Reconstituted human upper airway epithelium as 3-d in vitro model for nasal polyposis[J]. PLoS One, 2014, 9(6): e100537. doi:10.1371/journal.pone.0100537
[26] Carregaro F, Stefanini AC, Henrique T, et al. Study of small proline-rich proteins(SPRRs)in health and disease: a review of the literature[J]. Arch Dermatol Res, 2013, 305(10): 857-866. doi:10.1007/s00403-013-1415-9
[27] Soler ZM, Sauer DA, Mace J, et al. Relationship between clinical measures and histopathologic findings in chronic rhinosinusitis[J]. Otolaryngol Head Neck Surg, 2009, 141(4): 454-461. doi:10.1016/j.otohns.2009.06.085
[28] Kamani T, Yılmaz T, Sürücü S, et al. Histopathological changes in nasal mucosa with nasal septum deviation[J]. Eur Arch Otorhinolaryngol, 2014, 271(11): 2969-2974. doi:10.1007/s00405-014-2990-x
[29] Ramakrishnan VR, Gonzalez JR, Cooper SE, et al. RNA sequencing and pathway analysis identify tumor necrosis factor alpha driven small proline-rich protein dysregulation in chronic rhinosinusitis[J]. Am J Rhinol Allergy, 2017, 31(5): 283-288. doi:10.2500/ajra.2017.31.4457
[30] Tan YF, Sun XY, Tang S, et al. Expression and regulation of small prolin-rich protein 2 family members in the mice uteri[J]. Progress in Biochemistry & Biophysics, 2004, 31(1): 73-76. doi: 10.1111/j.1751-1097.2004.tb09866.x
[31] Mueller SK, Nocera AL, Dillon ST, et al. Tissue and exosomal serine protease inhibitors are significantly overexpressed in chronic rhinosinusitis with nasal polyps[J]. Am J Rhinol Allergy, 2019, 33(4): 359-368. doi:10.1177/1945892419831108
[32] Millien VO, Lu W, Shaw J, et al. Cleavage of fibrinogen by proteinases elicits allergic responses through toll-like receptor 4[J]. Science, 2013, 341(6147): 792-796. doi:10.1126/science.1240342
[33] Bae JS, Ryu G, Kim JH, et al. Effects of Wnt signaling on epithelial to mesenchymal transition in chronic rhinosinusitis with nasal polyp[J]. Thorax, 2020, 75(11): 982-993. doi:10.1136/thoraxjnl-2019-213916
[34] Comhair SA, McDunn J, Bennett C, et al. Metabolomic endotype of asthma[J]. J Immunol, 2015, 195(2): 643-650. doi:10.4049/jimmunol.1500736
[35] Chiu CY, Cheng ML, Chiang MH, et al. Gut microbial-derived butyrate is inversely associated with IgE responses to allergens in childhood asthma[J]. Pediatr Allergy Immunol, 2019, 30(7): 689-697. doi:10.1111/pai.13096
[36] Li YP, Qi XP, Liu B, et al. The STAT5-GATA2 pathway is critical in basophil and mast cell differentiation and maintenance[J]. J Immunol, 2015, 194(9): 4328-4338. doi:10.4049/jimmunol.1500018
[37] Liu ZY, Li M, Fang XM, et al. Identification of surrogate prognostic biomarkers for allergic asthma in nasal epithelial brushing samples by WGCNA[J]. J Cell Biochem, 2019, 120(4): 5137-5150. doi:10.1002/jcb.27790
[38] Soklic TK, Rijavec M, Silar M, et al. Transcription factors gene expression in chronic rhinosinusitis with and without nasal polyps[J]. Radiol Oncol, 2019, 53(3): 323-330. doi:10.2478/raon-2019-0029
[1] 侯凌霄,展长翠,许安廷,范新泰,王娜. 鼻黏膜组织CD4+ T细胞参与季节性变应性鼻炎发病机制的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 96-104.
[2] 袁玥,付圣尧,姜彦,陈敏. 细胞焦亡在慢性气道炎症性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 166-171.
[3] 王灵娃,王茹,房居高. 与喉乳头状瘤恶变进程及预后相关分子标志物研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 47-55.
[4] 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14.
[5] 熊攀辉,沈暘,杨玉成. 基于表型和内在型的慢性鼻窦炎诊治进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 15-19.
[6] 姚爽,娄鸿飞. 慢性鼻窦炎的内在型研究进展及精准医疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 20-29.
[7] 石帅,郑泉,程雷. 度普利尤单抗在慢性鼻窦炎伴鼻息肉治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 36-42.
[8] 王欢,胡俐,余洪猛. 慢性鼻窦炎相关嗅觉功能障碍研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 43-49.
[9] 宜若男,陈福权. 嗜酸性粒细胞与嗅觉功能障碍[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 50-55.
[10] 谷钰,万鑫,肖自安. 中性粒细胞和嗜酸性粒细胞在慢性鼻窦炎中的相互影响及临床治疗思考[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 56-63.
[11] 林海,朱莹,张维天. 慢性鼻窦炎发病中离子通道作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 64-70.
[12] 乔新杰,赵玉林. 慢性鼻窦炎中上皮间质转化信号转导通路及其他相关因子的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 71-77.
[13] 黄丹怡,张婷,陈静,张薇. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83.
[14] 李佳倪,朱冬冬,孟粹达. 表观遗传学在慢性鼻窦炎伴鼻息肉发病机制中的作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 84-91.
[15] 曹轩,肖旭平,李云秋. 透明质酸在慢性鼻窦炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 104-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!