山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (2): 104-113.doi: 10.6040/j.issn.1673-3770.0.2022.322

• 论著 • 上一篇    

特发性黄斑前膜患者神经节细胞复合体厚度与黄斑部深浅血流密度比值的相关性研究

雷敏,陈婷,艾明   

  1. 武汉大学人民医院/湖北省人民医院 眼科中心, 湖北 武汉 430060
  • 发布日期:2023-03-30
  • 通讯作者: 艾明. E-mail:aiminghbwh@163.com

Investigating the correlation between the macular ganglion cell complex and the ratio of deep and superficial vessel density in patients with idiopathic epiretinal membrane

LEI Min, CHEN Ting, AI Ming   

  1. Department of Ophthalmology, Renmin Hospital of Wuhan University / Hubei General Hospital, Wuhan 430060, Hubei, China
  • Published:2023-03-30

摘要: 目的 观察并初步探讨特发性黄斑前膜(iERM)患者神经节细胞复合体(mGCC)厚度与黄斑部深浅血流密度比值(DSFR)的相关性。 方法 回顾性非随机对照临床实验研究。纳入武汉大学人民医院确诊为单眼iERM的24例患者为试验组,正常对侧眼为对照组。采用光学相干断层扫描(OCT)测量黄斑中心凹、旁中心凹以及中心凹周围区视网膜厚度,OCT的GCC模式测量mGCC厚度,眼底相干光层析血管成像测量黄斑区浅层视网膜毛细血管丛血流密度和深层视网膜毛细血管丛(DCP)血流密度并计算DSFR。 DSFR记录方式为ETDRS-Grid记录法。分析iERM组与对照组上述参数的统计学差异以及相关性。 结果 iERM组OCT相关参数、mGCC相关参数与对侧眼对照组相比差异均具有统计学意义(P均<0.05);iERM组旁中心凹深浅血流密度比值(prDSFR)与mGCC平均厚度、上半部分厚度、下半部分厚度均具有显著相关性(r=-0.308,r=-0.263,r=-0.307,P均<0.05)。中心凹深浅血流密度比值与下半部分mGCC厚度具有显著相关性(r=-0.380,P<0.01)。mGCC平均厚度与浅层血管密度(SVD)、深层血管密度均无明显相关性,仅上半部分mGCC厚度与DCP层中心凹血流密度相关,下半部分mGCC厚度与SVD相关。D-MVR与mGCC平均厚度、上半部分mGCC厚度、下半部分mGCC厚度、prDSFR均具有显著相关性(r=0.434,r=0.521,r=0.341,r=0.295,P均<0.05)。 结论 prDSFR、D-MVR与mGCC平均厚度显著相关,prDSFR与D-MVR也显著相关,推测iERM眼黄斑区结构的改变与血流存在显著关系。

关键词: 特发性黄斑前膜, 神经节细胞复合体, 血管密度, 深浅血流比:相关性

Abstract: Objective We monitored and investigated the correlation between the thickness of the macular ganglion cell complex(mGCC)and the ratio of deep to superficial vessel density(DSFR)in patients with idiopathic epiretinal membrane(iERM). Methods A retrospective, non-randomized, and controlled clinical study was conducted. Twenty-four patients diagnosed with monocular iERM at the Renmin Hospital of Wuhan University were included in the experimental group, with the normal contralateral eyes serving as the control group. Retinal thickness in the macular fovea, para-fovea, and peripheral area was measured by optical coherence tomography(OCT). In contrast, the thickness of the mGCC was measured using the GCC mode of OCT. The vessel density of the superficial retinal capillary plexus(SCP)and deep retinal capillary plexus(DCP)in the macular area was measured by optical coherence tomography angiography(OCTA). The DSFR was recorded using an ETDRS-GRIDrid recording. Statistical differences and correlations of the above parameters between the iERM and control groups were analyzed. Results OCT-related and mGCC-related parameters in the iERM group differed significantly from those in the contralateral eye control group(all P<0.05). The parafovea DSFR(pPrDSFR)of the experimental group was significantly correlated with the average GCC, Superior GCC, and Inferior GCC(r=-0.308, r=-0.263, and r=-0.307, respectively; all P<0.05). The fovea DSFR FDSFR was significantly correlated with the thickness of the Inferior GCC(r=-0.380, P<0.01). While the thickness of the average GCC was not significantly correlated with superficial vessel density(SVD)SVD and deep vessel densityDVD; however, the thickness of the Superior GCC was correlated with the foveal vessel densityFVD of the DCP, and the thickness of the Inferior GCC was correlated with SVD. D-MVR was significantly correlated with the average GCC thickness, superior GCC, inferior GCC, and prDSFR(r=0.434, r=0.521, r=0.341, r=0.295, all P<0.05). Conclusion We observed that prDSFR and D-MVR were significantly correlated with the thickness of the average GCC and that the prDSFR was also significantly correlated with D-MVR, suggesting a significant relationship between the structural changes in the macular area of iERM and vessel density.

Key words: Idiopathic epiretinal membrane, Macular ganglion cell complex, Vessel density, Deep to superficial vessel density, Correlation

中图分类号: 

  • R774
[1] Adrian T. Fung, Justin Galvin, Tuan Tran. Epiretinal Membrane: a review[J]. Clin Experiment Ophthalmol, 2021,49: 289-308. doi: 10.1111/ceo.13914
[2] Mitchell P, Smith W, Chey T, et al. Prevalence and associations of epiretinal membranes. the blue mountains eye study, Australia[J]. Ophthalmology, 1997, 104(6): 1033-1040. doi:10.1016/s0161-6420(97)30190-0
[3] Klein R, Klein BE, Wang Q, et al. The epidemiology of epiretinal membranes[J]. Trans Am Ophthalmol Soc, 1994, 92: 403-425;discussion425-30
[4] Isik-Ericek P, Sizmaz S, Esen E, et al. The effect of epiretinal membrane surgery on macular microvasculature: an optical coherence tomography angiography study[J]. Int Ophthalmol, 2021, 41(3): 777-786. doi:10.1007/s10792-020-01630-y
[5] Kim YJ, Kim S, Lee JY, et al. Macular capillary plexuses after epiretinal membrane surgery: an optical coherence tomography angiography study[J]. Br J Ophthalmol, 2018, 102(8): 1086-1091. doi:10.1136/bjophthalmol-2017-311188
[6] Nelis P, Alten F, Clemens CR, et al. Quantification of changes in foveal capillary architecture caused by idiopathic epiretinal membrane using OCT angiography[J]. Graefes Arch Clin Exp Ophthalmol, 2017, 255(7): 1319-1324. doi:10.1007/s00417-017-3640-y
[7] Mathews NR, Tarima S, Kim DG, et al. Foveal contour changes following surgery for idiopathic epiretinal membrane[J]. Invest Ophthalmol Vis Sci, 2014, 55(12): 7754-7760. doi:10.1167/iovs.14-15075
[8] Zhang W, Sun XQ, Peng XY. Macular ganglion cell complex injury in different stages of anterior ischemic optic neuropathy[J]. World J Clin Cases, 2021, 9(21): 5830-5839. doi:10.12998/wjcc.v9.i21.5830
[9] Detwiler PB. Phototransduction in retinal ganglion cells[J]. Yale J Biol Med, 2018, 91(1): 49-52
[10] Bayhan HA, Aslan Bayhan S, Celikbilek A, et al. Evaluation of the chorioretinal thickness changes in Alzheimer's disease using spectral-domain optical coherence tomography[J]. Clin Exp Ophthalmol, 2015, 43(2): 145-151. doi:10.1111/ceo.12386
[11] ??塁ahin M, ??塁ahin A, Türkcü FM, et al. Peripapillary retinal nerve fiber layer and macular ganglion cell complex thickness in patients with chronic phase of nonarteritic anterior ischemic optic neuropathy[J]. Rom J Ophthalmol, 2018, 62(2): 138-143
[12] Tong YX, Wang TT, Zhang XY, et al. Optical coherence tomography evaluation of peripapillary and macular structure changes in pre-perimetric glaucoma, early perimetric glaucoma, and ocular hypertension: a systematic review and meta-analysis[J]. Front Med(Lausanne), 2021, 8: 696004. doi:10.3389/fmed.2021.696004
[13] 李颖颖, 冯洁, 李伟, 等. 缺血性脑卒中及其他神经退行性疾病对RNFL厚度的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 163-168. doi: 10.6040/j.issn.1673-3770.0.2021.273 LI Yingying, FENG Jie, LI Wei, et al. Effects of ischemic stroke and other neurodegenerative diseases on RNFL thickness[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 163-168. doi: 10.6040/j.issn.1673-3770.0.2021.273
[14] 邢怡桥, 刘芳, 李拓. 缺血型与非缺血型视网膜分支静脉阻塞患者黄斑区血流对比[J]. 眼科新进展, 2019, 39(11): 1036-1039. doi:10.13389/j.cnki.rao.2019.0237 XING Yiqiao, LIU Fang, LI Tuo. Observation of the macular vessels in ischemic and non-ischemic branch retinal vein occlusion using optical coherence tomography angiography[J]. Recent Advances in Ophthalmology, 2019, 39(11): 1036-1039. doi:10.13389/j.cnki.rao.2019.0237
[15] Mao JB, Xu ZK, Lao JM, et al. Assessment of macular microvasculature features before and after vitrectomy in the idiopathic macular epiretinal membrane using a grading system: an optical coherence tomography angiography study[J]. Acta Ophthalmol, 2021, 99(7): e1168-e1175. doi:10.1111/aos.14753
[16] Fung AT, Galvin J, Tran T. Epiretinal membrane: a review[J]. Clin Exp Ophthalmol, 2021, 49(3): 289-308. doi:10.1111/ceo.13914
[17] 雷雅迪, 刘鹤南, 陈晓隆. 光学相干断层扫描检测黄斑区神经节细胞复合体变化的研究进展[J]. 中华眼视光学与视觉科学杂志, 2022(1): 70-74. doi: 10.3760/cma.j.cn115909-20200604-00241 LEI Yadi, LIU Henan, CHEN Xiaolong. Research progress on the change of macular ganglion cell complex detected by optical coherence tomography[J]. Chinese Journal of Optometry Ophthalmology and Visual Science, 2022(1): 70-74. doi: 10.3760/cma.j.cn115909-20200604-00241
[18] 张伟, 孙心铨, 彭晓燕. 黄斑区神经节细胞复合体厚度形态特征在视路相关神经眼科的定位诊断价值[J]. 中华医学杂志, 2022(27): 2122-2125. doi: 10.3760/cma.j.cn112137-20220305-00466 ZHANG Wei, SUN Xinquan, PENG Xiaoyan. The location diagnostic value of morphologic features of macular ganglion cell complex thickness in optic pathway-related neuro-ophthalmology[J]. National Medical Journal of China, 2022(27): 2122-2125. doi: 10.3760/cma.j.cn112137-20220305-00466
[19] Park SW, Byon IS, Kim HY, et al. Analysis of the ganglion cell layer and photoreceptor layer using optical coherence tomography after idiopathic epiretinal membrane surgery[J]. Graefe's Arch Clin Exp Ophthalmol, 2015, 253(2): 207-214. doi:10.1007/s00417-014-2684-5
[20] 邹文军, 武志峰, 张洁, 等. 非动脉炎性前部缺血性视神经病变患眼视盘周围及黄斑区视网膜血流参数变化特征[J]. 中华眼视光学与视觉科学杂志, 2018, 20(12): 737-742. doi:10.3760/cma.j.issn.1674-845X.2018.12.007 ZOU Wenjun, WU Zhifeng, ZHANG Jie, et al. Measurement of peripapillary and macular retinal vasculature parameters in nonarteritic anterior ischemic optic neuropathy[J]. Chinese Journal of Optometry Ophthalmology and Visual Science, 2018, 20(12): 737-742. doi:10.3760/cma.j.issn.1674-845X.2018.12.007
[21] Lee SM, Pak KY, Kwon HJ, et al. Association between tangential contraction and early vision loss in idiopathic epiretinal membrane[J]. Retina, 2018, 38(3): 541-549. doi:10.1097/iae.0000000000001559
[22] Lin TC, Chung YC, Lin CY, et al. Focal nonperfusion of deep retinal capillary plexus in eyes with epiretinal membranes revealed by optical coherence tomography angiography[J]. Ophthalmic Surg Lasers Imaging Retina, 2016, 47(5): 404-409. doi:10.3928/23258160-20160419-02
[23] Kadonosono K, Itoh N, Nomura E, et al. Capillary blood flow velocity in patients with idiopathic epiretinal membranes[J]. Retina, 1999, 19(6): 536-539. doi:10.1097/00006982-199911000-00010
[24] Zhao F, Gandorfer A, Haritoglou C, et al. Epiretinal cell proliferation in macular pucker and vitreomacular traction syndrome: analysis of flat-mounted internal limiting membrane specimens[J]. Retina, 2013, 33(1): 77-88. doi:10.1097/IAE.0b013e3182602087
[25] Feng JY, Yang XT, Xu MQ, et al. Association of microvasculature and macular sensitivity in idiopathic macular epiretinal membrane: using OCT angiography and microperimetry[J]. Front Med(Lausanne), 2021, 8: 655013. doi:10.3389/fmed.2021.655013
[1] 赵泓霄,张晗. 光学放大效应对神经节细胞复合体测量的影响[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 105-109.
[2] 唐翡然,孔香云申家泉. 相干光层析血管成像术测量视盘旁浅层血管密度在青光眼诊疗中的作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 77-82.
[3] 张敏,李艳. OCT及OCTA在阿尔茨海默病诊断中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 157-162.
[4] 徐婧,瞿远珍,梁小芳,杨柳,汤洋. 视神经脊髓炎谱系疾病患者黄斑区及视盘周围视网膜血管参数变化特征[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 69-74.
[5] 赵燕恋, 卢永田, 杨继红, 张娟, 苗芳芳, 李洁萍. 鼻咽癌EGFL7的表达与肿瘤侵袭转移的关系[J]. 山东大学耳鼻喉眼学报, 2015, 29(6): 31-35.
[6] 刘敏1,郭建莲1,张华2. 玻璃体手术治疗特发性黄斑前膜的临床观察[J]. 山东大学耳鼻喉眼学报, 2013, 27(5): 65-67.
[7] 郇彦卫1,2,应良2,王茜2,董晓光2. OCT测量RNFLT、mGCCT在视神经萎缩诊断和视功能评价中的应用[J]. 山东大学耳鼻喉眼学报, 2012, 26(3): 63-67.
[8] 王德利,潘新良,雷大鹏. 下咽鳞癌中uPA的表达和微血管密度与肿瘤侵袭转移的关系[J]. 山东大学耳鼻喉眼学报, 2011, 25(2): 23-28.
[9] 梁昆1 ,姚磊1 ,马超2 ,孙睿杰1 ,陆忠华1 ,雷大鹏1 ,潘新良1
. 喉癌中PTTG的表达及其与bFGF和
微血管密度的关系
[J]. 山东大学耳鼻喉眼学报, 2009, 23(2): 15-19 .
[10] 姚磊1,张中华1,马超2,雷大鹏1,潘新良1
. 下咽鳞状细胞癌中Slit2的表达及其与微血管密度关系的临床研究[J]. 山东大学耳鼻喉眼学报, 2009, 23(1): 10-14 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!