山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (2): 150-155.doi: 10.6040/j.issn.1673-3770.0.2022.442
邓宇,王建伟,刘自强,李媛媛,侯小玉,接传红
DENG Yu, WANG Jianwei, LIU Ziqiang, LI Yuanyuan, HOU Xiaoyu, JIE Chuanhong
摘要: 中心视力下降是导致老年性黄斑变性等疾病患者对比敏感度、色觉等视功能下降的主要原因。研究发现中心视力下降患者在中心凹外视网膜功能相对较好位置可形成新的视觉任务区域,称之为优选注视点。本文综述了利用微视野仪进行视网膜最佳注视点定位和首选视网膜位点训练的相关文献,总结了目前的研究现状和不足。本文旨在对中枢性视力丧失患者视力状况的研究进行综述,为中枢性视力丧失患者视力康复方案的选择提供帮助。
中图分类号:
[1] | Tsai ASH, Gan ATL, Ting DSW, et al. Diabetic macular ischemia: correlation of retinal vasculature changes by optical coherence tomography angiography and functional deficit[J]. Retina, 2020, 40(11): 2184-2190. doi: 10.1097/IAE.0000000000002721 |
[2] | Tsang SH, Sharma T. Stargardt disease[J]. Adv Exp Med Biol, 2018, 1085: 139-151. doi: 10.1007/978-3-319-95046-4_27 |
[3] | Wang JW, Jie CH, Tao YJ, et al. Macular integrity assessment to determine the association between macular microstructure and functional parameters in diabetic macular edema[J]. Int J Ophthalmol, 2018, 11(7): 1185-1191. doi: 10.18240/ijo.2018.07.18 |
[4] | Vujosevic S, Heeren TFC, Florea D, et al. Scotoma Characteristics in macular telangiectasia type 2: MacTel Project Report No. 7-The MacTel Research Group[J]. Retina, 2018, Suppl 1: S14-S19. doi: 10.1097/IAE.0000000000001693 |
[5] | 雷敏,陈婷,艾明. 特发性黄斑前膜患者神经节细胞复合体厚度与黄斑部深浅血流密度比值的相关性研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 104-113. doi: 10.6040/j.issn.1673-3770.0.2022.322 LEI Min, CHEN Ting, AI Ming. Investigating the correlation between the macular ganglion cell complex and the ratio of deep and superficial vessel density in patients with idiopathic epiretinal membrane[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 104-113. doi: 10.6040/j.issn.1673-3770.0.2022.322 |
[6] | Welker SG, Pfau M, Heinemann M, et al. Retest reliability of mesopic and dark-adapted microperimetry in patients with intermediate age-related macular degeneration and age-matched controls[J]. Invest Ophthalmol Vis Sci, 2018, 59(4): AMD152-AMD159. doi: 10.1167/iovs.18-23878 |
[7] | 杨洪玲. 青光眼患者生活质量评估及相关因素的研究进展[J]. 山东大学耳鼻喉眼学报, 2016, 30(6): 94-97. doi: 10.6040/j.issn.1673-3770.0.2016.308 YANG Hongling. Research advances on the assessment and influencing factors of glaucoma patients' quality of life.[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2016, 30(6): 94-97. doi: 10.6040/j.issn.1673-3770.0.2016.308 |
[8] | Sasso P, Silvestri V, Sulfaro M, et al. Perceptual learning in patients with stargardt disease[J]. Can J Ophthalmol, 2019, 54(6): 708-716. doi: 10.1016/j.jcjo.2019.03.012 |
[9] | Curcio CA, McGwin G Jr, Sadda SR, et al. Functionally validated imaging endpoints in the Alabama study on early age-related macular degeneration 2(ALSTAR2): design and methods[J]. BMC Ophthalmol, 2020, 20(1): 196. doi: 10.1186/s12886-020-01467-0 |
[10] | Crossland MD, Engel SA, Legge GE. The preferred retinal locus in macular disease: toward a consensus definition[J]. Retina, 2011, 31(10): 2109-2114. doi: 10.1097/IAE.0b013e31820d3fba |
[11] | Varano M, Scassa C. Scanning laser ophthalmoscope microperimetry[J]. Semin Ophthalmol, 1998, 13(4): 203-209. doi: 10.3109/08820539809056054 |
[12] | Rohrschneider K, Fendrich T, Becker M, et al. Static fundus perimetry using the scanning laser ophthalmoscope with an automated threshold strategy[J]. Graefes Arch Clin Exp Ophthalmol, 1995, 233(12): 743-749. doi: 10.1007/BF00184084 |
[13] | Ferree CE, Rand G. The campperimeter-an illuminated perimeter with campimeter features[J]. Trans Am Ophthalmol Soc, 1920, 18: 164-172 |
[14] | Crossland MD, Luong VA, Rubin GS, et al. Retinal specific measurement of dark-adapted visual function: validation of a modified microperimeter[J]. BMC Ophthalmol, 2011, 11: 5. doi: 10.1186/1471-2415-11-5 |
[15] | Steinberg JS, Saßmannshausen M, Pfau M, et al. Evaluation of two systems for fundus-controlled scotopic and mesopic perimetry in eye with age-related macular degeneration[J]. Transl Vis Sci Technol, 2017, 6(4): 7. doi: 10.1167/tvst.6.4.7 |
[16] | Pfau M, Lindner M, Fleckenstein M, et al. Test-retest reliability of scotopic and mesopic fundus-controlled perimetry using a modified MAIA(Macular Integrity Assessment)in normal eyes[J]. Ophthalmologica, 2017, 237(1): 42-54. doi: 10.1159/000453079 |
[17] | Holz FG, Sadda SR, Busbee B, et al. Efficacy and safety of lampalizumab for geographic atrophy due to age-related macular degeneration: chroma and spectri phase 3 randomized clinical trials[J]. JAMA Ophthalmol, 2018, 136(6): 666-677. doi: 10.1001/jamaophthalmol.2018.1544 |
[18] | Altınbay D, Idil ??塁A. Current Approaches to Low Vision(Re)Habilitation[J]. Turk J Ophthalmol, 2019, 49(3): 154-163. doi: 10.4274/tjo.galenos.2018.53325 |
[19] | Sunness JS, Applegate CA, Haselwood D, et al. Fixation patterns and reading rates in eyes with central scotomas from advanced atrophic age-related macular degeneration and Stargardt disease[J]. Ophthalmology, 1996, 103(9): 1458-1466. doi: 10.1016/s0161-6420(96)30483-1 |
[20] | Treleaven AJ, Yu D. Training peripheral vision to read: reducing crowding through an adaptive training method[J]. Vision Res, 2020, 171: 84-94. doi: 10.1016/j.visres.2018.05.009 |
[21] | Morales MU, Saker S, Wilde C, et al. Reference clinical database for fixation stability metrics in normal subjects measured with the MAIA microperimeter[J]. Transl Vis Sci Technol, 2016, 5(6): 6. doi: 10.1167/tvst.5.6.6 |
[22] | Morales MU, Saker S, Mehta RL, et al. Preferred retinal locus profile during prolonged fixation attempts[J]. Can J Ophthalmol, 2013, 48(5): 368-374. doi: 10.1016/j.jcjo.2013.05.022 |
[23] | Satgunam P, Luo G. Does central vision loss impair visual search performance of adults more than children? Optom Vis Sci, 2018, 95(5): 443-451. doi: 10.1097/OPX.0000000000001213 |
[24] | Denniss J, Baggaley HC, Brown GM, et al. Properties of visual field defects around the monocular preferred retinal locus in age-related macular degeneration. Invest Ophthalmol Vis Sci, 2017, 58(5): 2652-2658. doi: 10.1167/iovs.16-21086 |
[25] | Somani S, Markowitz SN. Identification of fixation location with retinal photography in macular degeneration[J]. Can J Ophthalmol, 2004, 39(5): 517-520. doi: 10.1016/s0008-4182(04)80141-8 |
[26] | Kisilevsky E, Tarita-Nistor L, González EG, et al. Characteristics of the preferred retinal loci of better and worse seeing eyes of patients with a central scotoma[J]. Can J Ophthalmol, 2016, 51(5): 362-367. doi: 10.1016/j.jcjo.2016.01.007 |
[27] | Silvestri V, Sasso P, Piscopo P, et al. Reading with central vision loss: binocular summation and inhibition[J]. Ophthalmic Physiol Opt, 2020, 40(6): 778-789. doi: 10.1111/opo.12726 |
[28] | Erbezci M, Ozturk T. Preferred retinal locus locations in age-related macular degeneration[J]. Retina, 2018, 38(12): 2372-2378. doi: 10.1097/IAE.0000000000001897 |
[29] | Verdina T, Greenstein VC, Sodi A, et al. Multimodal analysis of the preferred retinal location and the transition zone in patients with stargardt disease[J]. Graefes Arch Clin Exp Ophthalmol, 2017, 255(7): 1307-1317. doi: 10.1007/s00417-017-3637-6 |
[30] | Altinbay D, Idil A, Sahli E. How much do clinical and microperimetric findings affect reading speed in low vision patients with age-related macular degeneration?[J] Curr Eye Res, 2021, 46(10): 1581-1588. doi: 10.1080/02713683.2021.1896740. |
[31] | Cheung SH, Legge GE. Functional and cortical adaptations to central vision loss[J]. Vis Neurosci, 2005, 22(2): 187-201. doi: 10.1017/S0952523805222071 |
[32] | Farzaneh A, Riazi A, Khabazkhoob M, et al. Location and stability of the preferred retinal locus in native Persian-speaking patients with age-related macular degeneration[J]. Clin Exp Optom, 2021, 104(2): 194-200. doi: 10.1111/cxo.13132 |
[33] | Jeong JH, Moon NJ. A study of eccentric viewing training for low vision rehabilitation[J]. Korean J Ophthalmol, 2011, 25(6):409-416. doi: 10.3341/kjo.2011.25.6.409 |
[34] | Farzaneh A, Riazi A, Falavarjani KG, et al. Evaluating reading performance in different preferred retinal loci in Persian-speaking patients with age-related macular degeneration[J]. J Curr Ophthalmol, 2021, 33(1): 48-55. doi: 10.4103/JOCO.JOCO_192_20 |
[35] | Tarita-Nistor L, Eizenman M, Landon-Brace N, et al. Identifying absolute preferred retinal locations during binocular viewing[J]. Optom Vis Sci, 2015, 92(8): 863-872. doi: 10.1097/OPX.0000000000000641 |
[36] | Schönbach EM, Strauss RW, Kong X, et al. Longitudinal changes of fixation location and stability within 12 months in stargardt disease: progstar report No. 12[J]. Am J Ophthalmol, 2018, 193:54-61. doi: 10.1016/j.ajo.2018.06.003 |
[37] | Tarita-Nistor L, Mandelcorn MS, Mandelcorn ED, et al. Effect of disease progression on the PRL location in patients with bilateral central vision loss[J]. Transl Vis Sci Technol, 2020, 9(8): 47. doi: 10.1167/tvst.9.8.47 |
[38] | Ehrlich JR, Stagg BC, Andrews C, et al. Vision impairment and receipt of eye care among older adults in low- and middle-income countries[J]. JAMA Ophthalmol, 2019, 137(2): 146-158. doi: 10.1001/jamaophthalmol.2018.5449 |
[39] | Bozkurt Oflaz A, Turgut Öztürk B, Gönül ??塁, et al. Short-term clinical results of preferred retinal locus training[J]. Turk J Ophthalmol, 2022, 52(1): 14-22. doi: 10.4274/tjo.galenos.2021.73368 |
[40] | Pyatova Y, Daibert-Nido M, Markowitz SN. Long term outcomes in dry age-related macular degeneration following low vision rehabilitation interventions[J]. Eur J Ophthalmol, 2022, 32(1): 296-299. doi: 10.1177/1120672120973621 |
[41] | Man REK, Gan ATL, Fenwick EK, et al. Impact of incident age-related macular degeneration and associated vision loss on vision-related quality of life[J]. Br J Ophthalmol, 2022, 106(8): 1063-1068. doi: 10.1136/bjophthalmol-2020-318269 |
[42] | Macnamara A, Chen C, Schinazi VR, et al. Simulating macular degeneration to investigate activities of daily living: a systematic review[J]. Front Neurosci, 2021, 15: 663062. doi: 10.3389/fnins.2021.663062 |
[43] | Ramírez Estudillo JA, León Higuera MI, Rojas Juárez S, et al. Visual rehabilitation via microperimetry in patients with geographic atrophy: a pilot study[J]. Int J Retina Vitreous, 2017, 3: 21. doi: 10.1186/s40942-017-0071-1 |
[44] | Scuderi G, Verboschi F, Domanico D, et al. Fixation improvement through biofeedback rehabilitation in stargardt disease[J]. Case Rep Med, 2016: 4264829. doi: 10.1155/2016/4264829 |
[45] | Morales MU, Saker S, Amoaku WM. Bilateral eccentric vision training on pseudovitelliform dystrophy with microperimetry biofeedback[J]. BMJ Case Rep, 2015: bcr2014207969. doi: 10.1136/bcr-2014-207969 |
[46] | Tarita-Nistor L, González EG, Markowitz SN, et al. Plasticity of fixation in patients with central vision loss[J]. Vis Neurosci, 2009, 26(5/6):487-494. doi: 10.1017/S0952523809990265 |
[47] | Sahli E, Altinbay D, Bingol Kiziltunc P, et al. Effectiveness of low vision rehabilitation using microperimetric acoustic biofeedback training in patients with central scotoma[J]. Curr Eye Res, 2021, 46(5): 731-738. doi: 10.1080/02713683.2020.1833348 |
[48] | Li S, Deng X, Chen Q, et al. Characteristics of preferred retinal locus in eyes with central vision loss secondary to different macular lesions[J]. Semin Ophthalmol, 2021, 36(8): 734-741. doi: 10.1080/08820538.2021.1900289 |
[49] | Morales MU, Saker S, Wilde C, et al. Biofeedback fixation training method for improving eccentric vision in patients with loss of foveal function secondary to different maculopathies[J]. Int Ophthalmol, 2020, 40(2): 305-312. doi: 10.1007/s10792-019-01180-y |
[50] | Altınbay D, Idil ??塁A. Fixation stability and preferred retinal locus in advanced age-related macular degeneration[J]. Turk J Ophthalmol, 2022, 52(1): 23-29. doi: 10.4274/tjo.galenos.2021.27985 |
[51] | Qian T, Xu X, Liu X, et al. Efficacy of MP-3 microperimeter biofeedback fixation training for low vision rehabilitation in patients with maculopathy[J]. BMC Ophthalmol, 2022, 22(1): 197. doi: 10.1186/s12886-022-02419-6 |
[52] | Melillo P, Prinster A, Di Iorio V, et al. Biofeedback rehabilitation and visual cortex response in stargardt's disease: a randomized controlled trial[J]. Transl Vis Sci Technol, 2020, 9(6): 6. doi: 10.1167/tvst.9.6.6 |
[53] | Barboni MTS, Récsán Z, Szepessy Z, et al. Preliminary findings on the optimization of visual performance in patients with age-related macular degeneration using biofeedback training[J]. Appl Psychophysiol Biofeedback, 2019, 44(1): 61-70. doi: 10.1007/s10484-018-9423-3 |
[54] | Chung STL. Training to improve temporal processing of letters benefits reading speed for people with central vision loss[J]. J Vis, 2021, 21(1): 14. doi: 10.1167/jov.21.1.14 |
[1] | 孟博, 黄映湘, 王康, 赵露, 王艳玲. 眼缺血综合征国内外文献特征分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 35-40. |
[2] | 杨秀芬,尤冉,马秀梅,王康,王艳玲. 以医院为基础的中心性浆液性脉络膜视网膜病变流行病学调查及危险因素的研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 75-79. |
[3] | 杨秀芬,李红阳,赵露,魏莹,胡向东,陈珺,王艳玲. 眼缺血综合征的临床及影像学特点分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 119-123. |
[4] | 王旭川,盛艳娟,王玉. 非外伤性玻璃体积血的病因及手术疗效分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(1): 107-109. |
[5] | 严槟,尹小芳,叶祖科,卢彦,洪剑威. 玻璃体腔注射雷珠单抗联合GLP治疗BRVO-ME的临床观察[J]. 山东大学耳鼻喉眼学报, 2017, 31(1): 110-113. |
[6] | 赵露,谢国丽,王艳玲. 玻璃体腔注射雷珠单抗对湿性年龄相关性黄斑变性患者眼血流动力学的影响[J]. 山东大学耳鼻喉眼学报, 2016, 30(4): 101-104. |
[7] | 严晓腾,冯军,康欣乐. 玻璃体腔注射康柏西普治疗视网膜静脉阻塞继发黄斑水肿的临床观察[J]. 山东大学耳鼻喉眼学报, 2016, 30(4): 105-108. |
[8] | 严晓腾, 冯军, 康欣乐. 曲安奈德玻璃体腔注射联合格栅样光凝治疗囊样黄斑水肿[J]. 山东大学耳鼻喉眼学报, 2015, 29(1): 60-63. |
[9] | 李昊,周芳. 特发性黄斑裂孔的形态与预后分析[J]. 山东大学耳鼻喉眼学报, 2014, 28(2): 81-83. |
[10] | 刘敏1,郭建莲1,张华2. 玻璃体手术治疗特发性黄斑前膜的临床观察[J]. 山东大学耳鼻喉眼学报, 2013, 27(5): 65-67. |
[11] | 邵雁1,徐新荣2. 中药治疗年龄相关性黄斑变性研究进展[J]. 山东大学耳鼻喉眼学报, 2013, 27(5): 91-94. |
[12] | 樊旭,关娟,赵慧英,王倩,盛豫. 先天性黄斑缺损1例[J]. 山东大学耳鼻喉眼学报, 2012, 26(3): 93-94. |
[13] | 赵强 ,魏伟 . 眼底自发荧光与多焦视网膜电图在干性老年黄斑变性诊断中的应用[J]. 山东大学耳鼻喉眼学报, 2011, 25(6): 80-82. |
[14] | 蔡克波. 内界膜剥除治疗高度近视黄斑劈裂的疗效分析[J]. 山东大学耳鼻喉眼学报, 2011, 25(5): 108-110. |
[15] | 杨丽敏. 曲安奈德离子导入治疗视网膜黄斑水肿的临床观察[J]. 山东大学耳鼻喉眼学报, 2009, 23(5): 71-72. |
|