山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (3): 83-87.doi: 10.6040/j.issn.1673-3770.0.2022.528

• 论著 • 上一篇    

高度近视患者黄斑区视网膜劈裂分型与脉络膜特征分析

尤冉,郭笑霄,王薇,陈曦,王艳玲   

  1. 首都医科大学附属北京友谊医院 眼科, 北京 100050
  • 发布日期:2023-05-24
  • 通讯作者: 陈曦. E-mail:xichen@ccmu.edu.cn;王艳玲. E-mail:wangyanling999@vip.sina.com
  • 基金资助:
    国家自然科学基金项目(82101128;81870686);北京市自然科学基金项目(7184201)

Association of macular retinoschisis severity with choroidal parameters in patients with high myopia

YOU Ran, GUO Xiaoxiao, WANG Wei, CHEN Xi, WANG Yanling   

  1. Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
  • Published:2023-05-24

摘要: 目的 探讨不同类型高度近视视网膜劈裂患者脉络膜特征及临床意义。 方法 采用横断面研究。2019年1月至2022年3月于首都医科大学附属北京友谊医院眼科就诊的患者中,选取根据黄斑病变萎缩-牵拉-新生血管(atrophic, tractional, neovascular components, ATN)分型符合T0~T3级高度近视患者74例74只眼纳入研究。其中,男性20例20只眼、女性54例54只眼;平均年龄(64.3±11.2)岁;眼轴长度(axial length, AL)(29.2±2.78)mm。患者均行加强深度成像模式光学相干断层扫描。依据ATN分型将患者按照病变程度分为T0~T3级,分别为20、23、18、13只眼。获取黄斑中心凹多个部位脉络膜厚度数据,采用MATLAB软件计算该区域的脉络膜容积(macular choroidal volume, MCV)。参数间行相关性分析。组间差异比较采用单因素分析和多因素分析。 结果 T0~T3组患者MCV分别为(4.6±2.3)mm3、(3.1±1.2)mm3、(2.9±1.3)mm3、(2.1±1.1)mm3,差异有统计学意义(P=0.006)。与T0组患者相比,T1~T3组患者最佳矫正视力明显下降,AL和等效球镜绝对值明显增加,黄斑中心凹下脉络膜厚度(subfoveal choroidal thickness, SFCT)明显下降,差异均有统计学意义(P<0.05)。T1与T3组间及T2与T3组间等效球镜的差异,以及T1与T2组间及T1与T3组间SFCT和MCV的差异依赖AL和年龄,T2和T3组间SFCT和MCV的差异不依赖AL和年龄。 结论 高度近视患者随着视网膜劈裂程度加重,MCV逐步下降,MCV的变化受到AL、年龄等多种因素影响。

关键词: 高度近视, 视网膜劈裂, 脉络膜容积, 萎缩-牵拉-新生血管分型, 光学相干断层扫描

Abstract: Objective This study aimed to evaluate the characteristics and clinical significance of macular choroidal parameters according to the different severity classifications of retinoschisis in patients with high myopia. Methods This cross-sectional study included 74 patients(74 eyes)diagnosed with high myopia of grades T0~T3, according to the atrophy-traction-neovascularization(ATN)classification, from January 2019 to March 2022 at the Ophthalmology Department of the Beijing Friendship Hospital, which is affiliated with the Capital Medical University. Of these patients, there were 20 male(20 eyes)and 54 female(54 eyes)patients with a mean age of(64.3±11.2)years and axial length(AL)of 29.2±2.78 mm. All patients underwent enhanced depth imaging optical coherence tomography. They were then classified as having T0, T1, T2, or T3 grades(n=20, 23, 18, and 13 eyes, respectively)according to the severity of their lesions based on the ATN classification. The choroidal thickness of multiple parts of the fovea was measured, and the macular choroidal volume(MCV)was calculated using the MATLAB software. Correlation analysis of the different parameters was performed. Differences between the groups were compared using univariate and multivariate analyses. Results The mean MCV of the patients in the T0, T1, T2, and T3 groups was(4.6±2.3)mm3,(3.1±1.2)mm3,(2.9±1.3)mm3, and(2.1±1.1)mm3, respectively, and the differences between these groups were statistically significant(P=0.006). The best corrected visual acuity of patients in the T1-T3 groups was significantly lower than that of patients in the T0 group. The AL and absolute value of the spherical equivalent were significantly higher(P<0.05), while the subfoveal choroidal thickness(SFCT)was significantly lower(P<0.05)than those in the T0 group. Differences in the value of the spherical equivalent between the T1 and T3 groups and between the T2 and T3 groups and in SFCT and MCV between the T1 and T2 groups and between the T1 and T3 groups were AL- and age-dependent. Meanwhile, differences in SFCT and MCV between the T2 and T3 groups were independent of AL and age. Conclusion The study revealed a gradual decrease in MCV associated with the increasing severity of retinoschisis in patients with high myopia. The change in MCV was affected by AL, age, and other factors.

Key words: High myopia, Retinoschisis, Macular choroidal volume, Atrophy-traction-neovascularization classification, Optical coherence tomography

中图分类号: 

  • R774.5
[1] Takahashi H, Tanaka N, Shinohara K, et al. Importance of paravascular vitreal adhesions for development of myopic macular retinoschisis detected by ultra-widefield OCT[J]. Ophthalmology, 2021, 128(2): 256-265. doi:10.1016/j.ophtha.2020.06.063
[2] Shinohara K, Tanaka N, Jonas JB, et al. Ultrawide-field OCT to investigate relationships between myopic macular retinoschisis and posterior staphyloma[J]. Ophthalmology, 2018, 125(10): 1575-1586. doi:10.1016/j.ophtha.2018.03.053
[3] Li Y, Foo LL, Wong CW, et al. Pathologic myopia: advances in imaging and the potential role of artificial intelligence[J]. Br J Ophthalmol, 2022: bjophthalmol-2021. doi:10.1136/bjophthalmol-2021-320926
[4] Cheong KX, Xu LQ, Ohno-Matsui K, et al. An evidence-based review of the epidemiology of myopic traction maculopathy[J]. Surv Ophthalmol, 2022, 67(6): 1603-1630. doi:10.1016/j.survophthal.2022.03.007
[5] Zheng FH, Wong CW, Sabanayagam C, et al. Prevalence, risk factors and impact of posterior staphyloma diagnosed from wide-field optical coherence tomography in Singapore adults with high myopia[J]. Acta Ophthalmol, 2021, 99(2): e144-e153. doi:10.1111/aos.14527
[6] Sun CB, You YS, Liu Z, et al. Myopic macular retinoschisis in teenagers: clinical characteristics and spectral domain optical coherence tomography findings[J]. Sci Rep, 2016, 6: 27952. doi:10.1038/srep27952
[7] Xiao W, Zhu ZT, Odouard C, et al. Wide-field en face swept-source optical coherence tomography features of extrafoveal retinoschisis in highly myopic eyes[J]. Invest Ophthalmol Vis Sci, 2017, 58(2): 1037. doi:10.1167/iovs.16-20607
[8] Ruiz-Medrano J, Montero JA, Flores-Moreno I, et al. Myopic maculopathy: current status and proposal for a new classification and grading system(ATN)[J]. Prog Retin Eye Res, 2019, 69: 80-115. doi:10.1016/j.preteyeres.2018.10.005
[9] Ohno-Matsui K, Kawasaki R, Jonas JB, et al. International photographic classification and grading system for myopic maculopathy[J]. Am J Ophthalmol, 2015, 159(5): 877-883.e7. doi:10.1016/j.ajo.2015.01.022
[10] Whitmore SS, Sohn EH, Chirco KR, et al. Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy[J]. Prog Retin Eye Res, 2015, 45: 1-29. doi:10.1016/j.preteyeres.2014.11.005
[11] Laíns I, Figueira J, Santos AR, et al. Choroidal thickness in diabetic retinopathy: the influence of antiangiogenic therapy[J]. Retina, 2014, 34(6): 1199-1207. doi:10.1097/IAE.0000000000000053
[12] Vujosevic S, Martini F, Cavarzeran F, et al. Macular and peripapillary choroidal thickness in diabetic patients[J]. Retina, 2012, 32(9): 1781-1790. doi:10.1097/iae.0b013e31825db73d
[13] Li ZX, Wang W, Liu R, et al. Choroidal thickness predicts progression of myopic maculopathy in high myopes: a 2-year longitudinal study[J]. Br J Ophthalmol, 2021, 105(12): 1744-1750. doi:10.1136/bjophthalmol-2020-316866
[14] Jonas JB, Xu L. Histological changes of high axial myopia[J]. Eye(Lond), 2014, 28(2): 113-117. doi:10.1038/eye.2013.223
[15] Zhou LX, Shao L, Xu L, et al. The relationship between scleral staphyloma and choroidal thinning in highly myopic eyes: the Beijing Eye Study[J]. Sci Rep, 2017, 7(1): 9825. doi:10.1038/s41598-017-10660-z
[16] Hsia Y, Wang SW, Huang CJ, et al. Clinical characteristics of highly myopic patients with asymmetric myopic atrophic maculopathy-analysis using multimodal imaging[J]. Invest Ophthalmol Vis Sci, 2021, 62(3): 21. doi:10.1167/iovs.62.3.21
[17] Du R, Xie SQ, Igarashi-Yokoi T, et al. Continued increase of axial length and its risk factors in adults with high Myopia[J]. JAMA Ophthalmol, 2021, 139(10): 1096-1103. doi:10.1001/jamaophthalmol.2021.3303
[18] Ueda E, Yasuda M, Fujiwara K, et al. Five-year incidence of myopic maculopathy in a general Japanese population: the hisayama study[J]. JAMA Ophthalmol, 2020, 138(8): 887-893. doi:10.1001/jamaophthalmol.2020.2211
[19] Igarashi-Yokoi T, Shinohara K, Fang YX, et al. Prognostic factors for axial length elongation and posterior staphyloma in adults with high Myopia: a Japanese observational study[J]. Am J Ophthalmol, 2021, 225: 76-85. doi:10.1016/j.ajo.2020.11.023
[20] 尤冉, 郭笑霄, 陈曦, 等. 高度近视患者视网膜和脉络膜形态结构研究[J]. 临床和实验医学杂志, 2018, 17(22): 2396-2400. doi:10.3969/j.issn.1671-4695.2018.22.013 YOU Ran, GUO Xiaoxiao, CHEN Xi, et al. Retinal and choroidal morphology in 32 patients with high myopia[J]. Journal of Clinical and Experimental Medicine, 2018, 17(22): 2396-2400. doi:10.3969/j.issn.1671-4695.2018.22.013
[21] Ohno-Matsui K, Jonas JB. Posterior staphyloma in pathologic myopia[J]. Prog Retin Eye Res, 2019, 70: 99-109. doi:10.1016/j.preteyeres.2018.12.001
[22] Ohno-Matsui K, Fang Y, Shinohara K, et al. Imaging of pathologic myopia[J]. Asia Pac J Ophthalmol(Phila), 2019, 8:172-177. doi: 10.22608/APO.2018494
[23] Yan YN, Wang YX, Yang Y, et al. Ten-year progression of myopic maculopathy: the Beijing eye study 2001-2011[J]. Ophthalmology, 2018, 125(8): 1253-1263. doi:10.1016/j.ophtha.2018.01.035
[24] Hirata A, Negi A. Morphological changes of choriocapillaris in experimentally induced chick myopia[J]. Graefe's Arch Clin Exp Ophthalmol, 1998, 236(2): 132-137. doi:10.1007/s004170050053
[25] Ohno-Matsui K, Takahashi H, Mao ZX, et al. Determining posterior vitreous structure by analysis of images obtained by AI-based 3D segmentation and ultrawidefield optical coherence tomography[J]. Br J Ophthalmol, 2023, 107(5):732-737. doi:10.1136/bjophthalmol-2021-320131
[26] Fang YX, Du R, Nagaoka N, et al. OCT-based diagnostic criteria for different stages of myopic maculopathy[J]. Ophthalmology, 2019, 126(7): 1018-1032. doi:10.1016/j.ophtha.2019.01.012
[1] 赵露,田慧文,孟博,王薇,王艳玲. 颈内动脉闭塞患者黄斑区视网膜脉络膜厚度变化分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 72-76.
[2] 熊翩翩,王佳琳,孙姣,周卓华,王艳玲. 高度近视豹纹状眼底视网膜脉络膜血流改变及相关性分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 114-121.
[3] 赵泓霄,张晗. 光学放大效应对神经节细胞复合体测量的影响[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 105-109.
[4] 李鹏伟,苏光明,刘江川,穆雅林. 光学相干断层扫描血管成像在2型黄斑毛细血管扩张症中的应用进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 140-144.
[5] 杨茹,张玉光,徐湘辉,吴雪莲,陶远,谭越. 超声乳化术对老年性白内障黄斑区视网膜结构影响的临床研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 97-102.
[6] 张敏,李艳. OCT及OCTA在阿尔茨海默病诊断中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 157-162.
[7] 张昕雨,雷春燕,张美霞. 运用OCT及OCTA观察硅油对视网膜脉络膜的影响[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 132-136.
[8] 王露萍黄映湘, 王艳玲. 眼缺血综合征研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 23-27.
[9] 傅强,王红星. 眼缺血综合征患者脉络膜厚度的分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 60-63.
[10] 冯雪,王海伟,李闻思,杨新同,孙存,赵媛,赵朋波,张建强. 基于SD-OCT分析高血压类型与视网膜血管管径的关系[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 64-68.
[11] 张晶,陶冶,李福生,王燊,曲冬懿,李莹,周跃华. OCT导航的飞秒激光制作角膜瓣的优势分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 17-21.
[12] 梁刚,马蓉,张丰菊. SMILE术中角膜帽下地塞米松平衡液冲洗与否的早期临床观察[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 22-31.
[13] 李锐,李勇,谢洪涛,岳章显,刘钊臣,袁慧敏. 眼压波动对人工晶体植入术患者眼底黄斑及视盘血流密度的影响分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(1): 89-92.
[14] 徐静静,郭海科. 有晶体眼后房型人工晶体植入与飞秒激光微小切口角膜基质透镜切除术矫正高度近视对眼表影响分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 18-20.
[15] 焦芮,韩克阳,王淑雅, 赵博军. 光学相干断层扫描技术在非动脉炎性前部缺血性视神经病变中的诊断现状[J]. 山东大学耳鼻喉眼学报, 2017, 31(1): 119-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!