山东大学耳鼻喉眼学报 ›› 2020, Vol. 34 ›› Issue (4): 64-68.doi: 10.6040/j.issn.1673-3770.1.2020.052

• 眼缺血综合征多学科精准诊疗 临床研究 • 上一篇    下一篇

基于SD-OCT分析高血压类型与视网膜血管管径的关系

冯雪1,王海伟2,李闻思1,杨新同1,孙存1,赵媛1,赵朋波1,张建强1   

  1. 冯雪1, 王海伟2, 李闻思1, 杨新同1, 孙存1, 赵媛1, 赵朋波1, 张建强11.北京市回民医院 眼科, 北京 100054;
    2.首都医科大学附属复兴医院 眼科, 北京 100038
  • 收稿日期:2020-05-22 出版日期:2020-07-20 发布日期:2020-08-28
  • 基金资助:
    北京市西城区财政科技专项项目(XCSTS-SD2018-11)

Association between the classification of blood pressure and retinal vessel diameter measured by SD-OCTFENG Xue1, WANG Haiwei2, LI Wensi1, YANG Xintong1, SUN Cun1, ZHAO Yuan1, ZHAO Pengbo1, ZHANG Jianqiang1 1. Department of Ophthalmology, Beijing Moslem People's Hospital, Beijing 100054, China; 2. Department of Ophthalmology, Fuxing Hospital, Capital Medical University, Beijing 100038, ChinaAbstract:

ObjectiveTo analyze the association between the classification of blood pressure and retinal vessel diameter measured by spectral-domain optical coherence tomography(SD-OCT). MethodsThis was a cross-sectional study that included 103 patients(103 eyes)with hypertension. Based on the classification of hypertension, the subjects were divided into three groups: the isolated systolic hypertension(ISH)(34 eyes), isolated diastolic hypertension(IDH)(34 eyes), and systolic combined with diastolic hypertension(SDH)(35 eyes)groups. Retinal vessel diameters were measured by SD-OCT. The differences among the central retinal arteriolar equivalents(CRAEs), the central retinal venular equivalents(CRVEs), and the artery-to-vein ratios(AVRs)of the three groups were analyzed. Multivariate logistic regression was performed to evaluate the association between blood pressure and AVR. ResultsThere were significant differences among the CRAEs and AVRs of the three groups(F=4.543, 4.308; P=0.013, 0.016). The CRAE and AVR of the SDH group were the lowest; those of the IDH group were the highest. There were no significant differences among the CRVEs of the three groups(F=0.417, P=0.660). After correction for risk factors, such as gender and age, multivariate logistic regression showed that patients with high systolic blood pressure were more likely to have AVRs of < 0.7 (OR=1.080, P=0.015). ConclusionsAmong the three types of hypertension, SDH was associated with the lowest CRAE and AVR. High systolic pressure is a risk factor for AVRs of < 0.7.   

  1. Key words:Spectral domain;
    Optical coherence tomography;
    Hypertension;
    Classification;
    Retina;
    vascular diameter全球高血压的患病率呈升高趋势, 预计2025年将累及全世界近1/3的人口[1]。高血压可引起眼[2]、脑[3]、肾[4]等多个靶器官损害。高血压早期, 视网膜动脉痉挛变细[5], 随着高血压的进展, 可出现高血压性小动脉硬化改变, 即视网膜动脉管腔狭窄等病理变化[6]。关于高血压的不同类型对视网膜血管管径影响的相关研究报道较少。我们应用频域光学相干断层成像(Spectral domain optical coherence tomography, SD-OCT)对以下三种类型的高血压即单纯收缩期高血压(isolated systolic hypertension, ISH)、单纯舒张期高血压(isolated diastolic hypertension, IDH)、收缩期和舒张期联合性高血压(systolic combined with diastolic hypertension, SDH)患者的视网膜血管管径进行测量, 旨在探讨视网膜血管管径在不同高血压类型方面的差异。
  • Received:2020-05-22 Online:2020-07-20 Published:2020-08-28

摘要: 目的 应用频域光学相干断层成像(SD-OCT)测量视网膜血管管径,分析高血压类型与视网膜血管管径的关系。 方法 研究为横断面研究,将103例高血压患者共103眼纳入研究。根据高血压类型将入组患者分为3个组:单纯收缩期高血压(ISH)组34例(34眼)、单纯舒张期高血压(IDH)组34例(34眼)、收缩期和舒张期联合性高血压(SDH)组35例(35眼),应用SD-OCT测量视网膜血管管径,分析3组之间的视网膜动脉直径(CRAE)、视网膜静脉直径(CRVE)、视网膜动静脉直径比例(AVR)的差异。应用logistic回归分析血压与AVR的关系。 结果 3组之间在CRAE、AVR方面相比,差异均有统计学意义(F=4.5434.308,P=0.013、0.016),SDH组CRAE、AVR最小,IDH组CRAE、AVR最大。3组之间在CRVE方面相比,差异无统计学意义(F=0.417,P=0.660)。多因素logistic回归分析,控制年龄、性别等混杂因素后,高收缩压与AVR<0.7的发生显著相关(OR=1.080,P=0.015)。 结论 三种类型高血压中,SDH型高血压患者的视网膜动脉最细、视网膜动静脉直径比例最小。高收缩压是AVR<0.7发生的危险因素。

关键词: 频域, 光学相干断层扫描, 高血压, 分型, 视网膜, 血管管径

Abstract: Objective To analyze the association between the classification of blood pressure and retinal vessel diameter measured by spectral-domain optical coherence tomography(SD-OCT). Methods This was a cross-sectional study that included 103 patients(103 eyes)with hypertension. Based on the classification of hypertension, the subjects were divided into three groups: the isolated systolic hypertension(ISH)(34 eyes), isolated diastolic hypertension(IDH)(34 eyes), and systolic combined with diastolic hypertension(SDH)(35 eyes)groups. Retinal vessel diameters were measured by SD-OCT. The differences among the central retinal arteriolar equivalents(CRAEs), the central retinal venular equivalents(CRVEs), and the artery-to-vein ratios(AVRs)of the three groups were analyzed. Multivariate logistic regression was performed to evaluate the association between blood pressure and AVR. Results There were significant differences among the CRAEs and AVRs of the three groups(F=4.543, 4.308; P=0.013, 0.016). The CRAE and AVR of the SDH group were the lowest; those of the IDH group were the highest. There were no significant differences among the CRVEs of the three groups(F=0.417, P=0.660). After correction for risk factors, such as gender and age, multivariate logistic regression showed that patients with high systolic blood pressure were more likely to have AVRs of < 0.7 (OR=1.080, P=0.015). Conclusions Among the three types of hypertension, SDH was associated with the lowest CRAE and AVR. High systolic pressure is a risk factor for AVRs of < 0.7.

Key words: Spectral domain, Optical coherence tomography, Hypertension, Classification, Retina, vascular diameter

中图分类号: 

  • R774.1
[1] Haeusler KG, Huttner HB, Kuramatsu JB. Comment on 2018 ESC/ESH Guidelines for the management of arterial hypertension[J]. Eur Heart J, 2019, 40(25): 2092. doi:10.1093/eurheartj/ehz126.
[2] Fraser-Bell S, Symes R, Vaze A. Hypertensive eye disease: a review[J]. Clin Experiment Ophthalmol, 2017, 45(1): 45-53. doi:10.1111/ceo.12905.
[3] Moroni F, Ammirati E, Magnoni M, et al. Carotid atherosclerosis, silent ischemic brain damage and brain atrophy: a systematic review and meta-analysis[J]. Int J Cardiol, 2016, 223: 681-687. doi:10.1016/j.ijcard.2016.08.234.
[4] Sun D, Wang JJ, Wang W, et al. Human podocyte injury in the early course of hypertensive renal injury[J]. World J Clin Cases, 2019, 7(22): 3698-3710. doi:10.12998/wjcc.v7.i22.3698.
[5] Yıldırım T, Özkan S, Yılmaz ÖÇ, et al. Increased rate of any retinopathy risk in patients with masked hypertension[J]. Clin Exp Hypertens, 2020, 42(6): 479-482. doi:10.1080/10641963.2019.1705320.
[6] Ali F, Tacey M, Lykopandis N, et al. Microvascular narrowing and BP monitoring: a single centre observational study[J]. PLoS One, 2019, 14(3): e0210625. doi:10.1371/journal.pone.0210625.
[7] Omboni S, Posokhov I, Parati G, et al. Variable association of 24-h peripheral and central hemodynamics and stiffness with hypertension-mediated organ damage: the VASOTENS Registry[J]. J Hypertens, 2020, 38(4): 701-715. doi:10.1097/HJH.0000000000002312.
[8] Harjasouliha A, Raiji V, Garcia Gonzalez JM. Review of hypertensive retinopathy[J]. Dis Mon, 2017, 63(3): 63-69. doi:10.1016/j.disamonth.2016.10.002.
[9] 陈璇,韩莉,范传峰,等. 高血压视网膜病变患者血浆内皮素-1的表达及意义[J]. 山东大学耳鼻喉眼学报,2016,30(6):78-80. doi: 10.6040/j.issn.1673-3770.0.2016.066. CHEN Xuan,HAN Li, FAN Chuanfeng, et al. Expression of endothelin-1 in plasma of patients with hypertensive retinopathy in essential hypertension[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2016,30(6):78-80. doi: 10.6040/j.issn.1673-3770.0.2016.066.
[10] Dumitrescu AG, Voinea L, Badarau IA, et al. Update on retinal vascular caliber[J]. Rom J Ophthalmol, 2017, 61(3): 171-180. doi:10.22336/rjo.2017.32.
[11] Heitmar R, Kalitzeos AA, Patel SR, et al. Comparison of subjective and objective methods to determine the retinal arterio-venous ratio using fundus photography[J]. J Optom, 2015, 8(4): 252-257. doi:10.1016/j.optom.2014.07.002.
[12] Wei FF, Thijs L, Yu CG, et al. Retinal microvasculature in relation to central hemodynamics in a Flemish population[J]. Hypertension, 2019, 74(3): 606-613. doi:10.1161/HYPERTENSIONAHA.119.13255.
[13] Schuster AK, Fischer JE, Vossmerbaeumer C, et al. Optical coherence tomography-based retinal vessel analysis for the evaluation of hypertensive vasculopathy[J]. Acta Ophthalmol, 2015, 93(2): e148-e153. doi:10.1111/aos.12509.
[14] Rim TH, Choi YS, Kim SS, et al. Retinal vessel structure measurement using spectral-domain optical coherence tomography[J]. Eye(Lond), 2016, 30(1): 111-119. doi:10.1038/eye.2015.205.
[15] Ouyang YL, Shao Q, Scharf D, et al. Retinal vessel diameter measurements by spectral domain optical coherence tomography[J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253(4): 499-509. doi:10.1007/s00417-014-2715-2.
[16] Yano Y, Neeland IJ, Ayers C, et al. Hemodynamic and mechanical properties of the proximal aorta in young and middle-aged adults with isolated systolic hypertension: the Dallas heart study[J]. Hypertension, 2017, 70(1): 158-165. doi:10.1161/HYPERTENSIONAHA.117.09279.
[17] Muiesan ML, Paini AN, Aggiusti C, et al. Hypertension and organ damage in women[J]. High Blood Press Cardiovasc Prev, 2018, 25(3): 245-252. doi:10.1007/s40292-018-0265-0.
[18] Rubio-Guerra A, Duran-Salgado M. Recommendations for the treatment of hypertension in elderly people[J]. Cardiovasc Hematol Agents Med Chem, 2015, 12(3): 146-151. doi:10.2174/1871525713666150310110357.
[19] Mittal C, Singh M, Bakhshi T, et al. Isolated diastolic hypertension and its risk factors in semi-rural population of South India[J]. Indian Heart J, 2019, 71(3): 272-276. doi:10.1016/j.ihj.2019.07.007.
[20] Aissopou EK, Papathanassiou M, Nasothimiou EG, et al. The Keith-Wagener-Barker and Mitchell-Wong grading systems for hypertensive retinopathy: association with target organ damage in individuals below 55 years[J]. J Hypertens, 2015, 33(11): 2303-2309. doi:10.1097/HJH.0000000000000702.
[21] Takayama K, Kaneko H, Ito Y, et al. Novel classification of early-stage systemic hypertensive changes in human Retina based on OCTA measurement of choriocapillaris[J]. Sci Rep, 2018, 8(1): 15163. doi:10.1038/s41598-018-33580-y.
[22] Duarte T, Gonçalves S, Brito R, et al. Relationship between nocturnal blood pressure profiles and the presence and severity of hypertensive retinopathy[J]. Rev Port Cardiol, 2018, 37(2): 169-173. doi:10.1016/j.repc.2017.06.009.
[1] 杨明综述魏文斌审校. 溶栓治疗在视网膜动脉阻塞中的应用进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 5-10.
[2] 王露萍综述黄映湘,王艳玲审校. 眼缺血综合征研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 23-27.
[3] 陈曦,李珊珊,赵露,尤冉,王艳玲. 动脉溶栓治疗视网膜中央动脉阻塞Meta分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 28-34.
[4] 李萱, 黄映湘. 25例虹膜新生血管发生原因探讨[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 41-47.
[5] 傅强,王红星. 眼缺血综合征患者脉络膜厚度的分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 60-63.
[6] 杨秀芬,尤冉,马秀梅,王康,王艳玲. 以医院为基础的中心性浆液性脉络膜视网膜病变流行病学调查及危险因素的研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 75-79.
[7] 张晶,陶冶,李福生,王燊,曲冬懿,李莹,周跃华. OCT导航的飞秒激光制作角膜瓣的优势分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 17-21.
[8] 梁刚,马蓉,张丰菊. SMILE术中角膜帽下地塞米松平衡液冲洗与否的早期临床观察[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 22-31.
[9] 林晓芹综述吴苗琴审校. 特发性视网膜前膜的发病机制及治疗进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 121-128.
[10] 李锐,李勇,谢洪涛,岳章显,刘钊臣,袁慧敏. 眼压波动对人工晶体植入术患者眼底黄斑及视盘血流密度的影响分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(1): 89-92.
[11] 韩克阳,于贝贝,赵博军. 短期视网膜静脉阻塞抗VEGF治疗后黄斑区形态结构分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 129-131.
[12] 苏杰,马春梅,赵丽莉,刘岩,邵宏超. miR-204通过内质网应激抑制视网膜母细胞瘤生长作用及机制的研究[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 105-108.
[13] 刘建波,张环. 超声乳化联合玻璃体腔药物注射治疗白内障合并糖尿病性黄斑水肿[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 99-104.
[14] 李宝华,刘平,王新. β-榄香烯影响糖尿病大鼠视网膜中IL-1β、ICAM-1表达分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 111-114.
[15] 梁倩倩,杨庭骅,赵博军. 光学相干层析血管扫描在视网膜静脉阻塞中的应用[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 139-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!