山东大学耳鼻喉眼学报 ›› 2020, Vol. 34 ›› Issue (6): 129-134.doi: 10.6040/j.issn.1673-3770.0.2019.604
• • 上一篇
裴雪艳1,2综述王琰1,2审校
PEI Xueyan1,2Overview,WANG Yan1,2Guidance
摘要: 恶性肿瘤仍是目前医学难以攻克的课题,原发肿瘤是否已经发生转移,直接影响肿瘤患者的预后。基质金属蛋白酶14(MMP-14)参与正常细胞的生理功能和肿瘤相关过程,如细胞迁移、炎症、侵袭、转移、血管生成和扩散。侵袭性伪足是恶性肿瘤细胞膜形成的一种向外凸起的、具有降解细胞外基质(ECM)能力的膜型突起结构。两者在肿瘤的发生发展中具有重要作用。
中图分类号:
[1] Kudelski J, Mynarczyk G, Darewicz B, et al. Dominative role of MMP-14 over MMP-15 in human urinary bladder carcinoma on the basis of its enhanced specific activity[J]. Medicine(Baltimore), 2020, 99(7): e19224. doi:10.1097/MD.0000000000019224. [2] Duan FJ, Peng Z, Yin JJ, et al. Expression of MMP-14 and prognosis in digestive system carcinoma: a meta-analysis and databases validation[J]. J Cancer, 2020, 11(5): 1141-1150. doi:10.7150/jca.36469. [3] Yuan HP, Wei R, Xiao YH, et al. RHBDF1 regulates APC-mediated stimulation of the epithelial-to-mesenchymal transition and proliferation of colorectal cancer cells in part via the Wnt/β-catenin signalling pathway[J]. Exp Cell Res, 2018, 368(1): 24-36. doi:10.1016/j.yexcr.2018.04.009. [4] Liu G, Bao YT, Liu CH, et al. IKKε phosphorylates kindlin-2 to induce invadopodia formation and promote colorectal cancer metastasis[J]. Theranostics, 2020, 10(5): 2358-2373. doi:10.7150/thno.40397. [5] Kumar S, Das A, Barai A, et al. MMP secretion rate and inter-invadopodia spacing collectively govern cancer invasiveness[J]. Biophys J, 2018, 114(3): 650-662. doi:10.1016/j.bpj.2017.11.3777. [6] Yang J, Kasberg WC, Celo A, et al. Post-translational modification of the membrane type 1 matrix metalloproteinase(MT1-MMP)cytoplasmic tail impacts ovarian cancer multicellular aggregate dynamics[J]. J Biol Chem, 2017, 292(32): 13111-13121. doi:10.1074/jbc.M117.800904. [7] Planchon D, Rios Morris E, Genest M, et al. MT1-MMP targeting to endolysosomes is mediated by upregulation of flotillins[J]. J Cell Sci, 2018, 131(17): jcs218925. doi:10.1242/jcs.218925. [8] Lodillinsky C, Infante E, Guichard A, et al. P63/MT1-MMP Axis is required for in situ to invasive transition in basal-like breast cancer[J]. Oncogene, 2016, 35(3): 344-357. doi:10.1038/onc.2015.87. [9] Kajiho H, Kajiho Y, Frittoli E, et al. RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs[J]. EMBO Rep, 2016, 17(7): 1061-1080. doi:10.15252/embr.201642032. [10] Loskutov YV, Kozyulina PY, Kozyreva VK, et al. NEDD9/Arf6-dependent endocytic trafficking of matrix metalloproteinase 14: a novel mechanism for blocking mesenchymal cell invasion and metastasis of breast cancer[J]. Oncogene, 2015, 34(28): 3662-3675. doi:10.1038/onc.2014.297. [11] Waheed S, Dorjbal B, Hamilton CA, et al. Progesterone and calcitriol reduce invasive potential of endometrial cancer cells by targeting ARF6, NEDD9 and MT1-MMP[J]. Oncotarget, 2017, 8(69): 113583-113597. doi:10.18632/oncotarget.22745. [12] Wang ZQ, Zhang F, He JQ, et al. Binding of PLD2-generated phosphatidic acid to KIF5B promotes MT1-MMP surface trafficking and lung metastasis of mouse breast cancer cells[J]. Dev Cell, 2017, 43(2): 186-197.e7. doi:10.1016/j.devcel.2017.09.012. [13] Baker TM, Waheed S, Syed V. RNA interference screening identifies clathrin-B and cofilin-1 as mediators of MT1-MMP in endometrial cancer[J]. Exp Cell Res, 2018, 370(2): 663-670. doi:10.1016/j.yexcr.2018.07.031. [14] Ager EI, Kozin SV, Kirkpatrick ND, et al. Blockade of MMP14 activity in murine breast carcinomas: implications for macrophages, vessels, and radiotherapy[J]. J Natl Cancer Inst, 2015, 107(4): djv017. doi:10.1093/jnci/djv017. [15] Guangfei C, Feng C, Zhanwei D, et al. MMP14 predicts a poor prognosis in patients with colorectal cancer[J]. Human Pathology, 2019, 83(1): 36-42. doi: 10.1016/j.humpath.2018.03.030. [16] 吴静, 刘业海. 头颈部鳞状细胞癌的靶向治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 97-102. doi:10.6040/j.issn.1673-3770.0.2018.058. WU Jing, LIU Yehai. Targeted therapy for head and neck squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(5): 97-102. doi:10.6040/j.issn.1673-3770.0.2018.058. [17] 王小清, 王金莲, 林帅, 等. miR-369-3p靶向MMP14调节乳头状甲状腺癌细胞侵袭、迁移和上皮间质转化的作用[J]. 中国免疫学杂志, 2019, 35(21): 2576-2581. doi: 10.3969/j.issn.1000-484X.2019.21.004. WANG Xiaoqing, WANG Jinlian, LIN Shuai, et al. Effect of miR-369-3p targeting MMP14 on invasion, migration and epithelial-mesenchymal transition of papillary thyroid carcinoma cells[J]. Chinese Journal of Immunology, 2019, 35(21): 2576-2581. doi: 10.3969/j.issn.1000-484X.2019.21.004. [18] Nair RP, Timiri Shanmugam PS, Sunavala-Dossabhoy G. Discretionary transduction of MMP-sensitized tousled in head and neck cancer[J]. Mol Ther Oncolytics, 2019, 14: 57-65. doi:10.1016/j.omto.2019.02.003. [19] 高浩然, 佟德惠, 黄泽清, 等. RECK、MMP-14及VEGF在喉癌中的表达及临床意义[J]. 中国医药导报, 2016, 13(2): 85-88. doi: CNKI:SUN:YYCY.0.2016-02-024. GAO Haoran, TONG Dehui, HUANG Zeqing, et al. Expression and clinical significance of RECK, MMP-14 and VEGF pro-tein in laryngeal carcinoma[J]. China Medical Herald, 2016, 13(2): 85-88. doi: CNKI:SUN:YYCY.0.2016-02-024. [20] Eddy RJ, Weidmann MD, Sharma VP, et al. Tumor cell invadopodia: invasive protrusions that orchestrate metastasis[J]. Trends Cell Biol, 2017, 27(8): 595-607. doi:10.1016/j.tcb.2017.03.003. [21] Castro-Castro A, Marchesin V, Monteiro P, et al. Cellular and molecular mechanisms of MT1-MMP-dependent cancer cell invasion[J]. Annu Rev Cell Dev Biol, 2016, 32: 555-576. doi:10.1146/annurev-cellbio-111315-125227. [22] Esmaeili Pourfarhangi K, Cardenas de la Hoz E, Cohen AR, et al. Contact guidance is cell cycle-dependent[J]. APL Bioeng, 2018, 2(3): 031904. doi:10.1063/1.5026419. [23] Bayarmagnai B, Perrin L, Pourfarhangi KE, et al. Invadopodia-mediated ECM degradation is enriched in the G1 phase of the cell cycle[J]. Biologists Ltd, 2019, v.18:1-46. doi: 10.1242/jcs.227116. [24] Di Martino J, Henriet E, Ezzoukhry Z, et al. The microenvironment controls invadosome plasticity[J]. J Cell Sci, 2016, 129(9): 1759-1768. doi:10.1242/jcs.182329. [25] Zhao P, Xu YL, Wei Y, et al. The CD44s splice isoform is a central mediator for invadopodia activity[J]. J Cell Sci, 2016, 129(7): 1355-1365. doi:10.1242/jcs.171959. [26] McFarlane S, McFarlane C, Montgomery N, et al. CD44-mediated activation of α5β1-integrin, cortactin and paxillin signaling underpins adhesion of basal-like breast cancer cells to endothelium and fibronectin-enriched matrices[J]. Oncotarget, 2015, 6(34): 36762-36773. doi:10.18632/oncotarget.5461. [27] Díaz B, Yuen A, Iizuka S, et al. Notch increases the shedding of HB-EGF by ADAM12 to potentiate invadopodia formation in hypoxia[J]. J Cell Biol, 2013, 201(2): 279-292. doi:10.1083/jcb.201209151. [28] Wang YR, Wang HX, Li JF, et al. Direct visualization of the phenotype of hypoxic tumor cells at single cell resolution in vivo using a new hypoxia probe[J]. Intravital, 2016, 5(2): e1187803. doi:10.1080/21659087.2016.1187803. [29] Li HM, Yang JG, Liu ZJ, et al. Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2017, 36(1): 7. doi:10.1186/s13046-016-0481-1. [30] Jimenez L, Jayakar SK, Ow TJ, et al. Mechanisms of invasion in head and neck cancer[J]. Arch Pathol Lab Med, 2015, 139(11): 1334-1348. doi:10.5858/arpa.2014-0498-RA. [31] Qin Z, Feng JF, Liu YS, et al. PDGF-D promotes dermal fibroblast invasion in 3-dimensional extracellular matrix via Snail-mediated MT1-MMP upregulation[J]. Tumour Biol, 2016, 37(1): 591-599. doi:10.1007/s13277-015-3828-x. [32] Hoshino D, Koshikawa N, Suzuki T, et al. Establishment and validation of computational model for MT1-MMP dependent ECM degradation and intervention strategies[J]. PLoS Comput Biol, 2012, 8(4): e1002479. doi:10.1371/journal.pcbi.1002479. [33] Yu XZ, Zech T, McDonald L, et al. N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods[J]. J Cell Biol, 2012, 199(3): 527-544. doi:10.1083/jcb.201203025. [34] Lafleur MA, Mercuri FA, Ruangpanit N, et al. Type I collagen abrogates the clathrin-mediated internalization of membrane type 1 matrix metalloproteinase(MT1-MMP)via the MT1-MMP hemopexin domain[J]. J Biol Chem, 2006, 281(10): 6826-6840. doi:10.1074/jbc.M513084200. [35] Qiang L, Cao H, Chen J, et al. Pancreatic tumor cell metastasis is restricted by MT1-MMP binding protein MTCBP-1[J]. J Cell Biol, 2019, 218(1): 317-332. doi:10.1083/jcb.201802032. [36] El Azzouzi K, Wiesner C, Linder S. Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence[J]. J Cell Biol, 2016, 213(1): 109-125. doi:10.1083/jcb.201510043. [37] Pratt J, Iddir M, Bourgault S, et al. Evidence of MTCBP-1 interaction with the cytoplasmic domain of MT1-MMP: Implications in the autophagy cell index of high-grade glioblastoma[J]. Mol Carcinog, 2016, 55(2): 148-160. doi:10.1002/mc.22264. [38] Noll B, Benz D, Frey Y, et al. DLC3 suppresses MT1-MMP-dependent matrix degradation by controlling RhoB and actin remodeling at endosomal membranes[J]. J Cell Sci, 2019, 132(11): jcs223172. doi:10.1242/jcs.223172. |
[1] | 陈坤,李磊,孟国珍,杨军,侯东明. 婴儿鼻腔软骨间叶性错构瘤2例及文献复习[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 27-30. |
[2] | 郑朝攀,曾小燕,张博,韩灵,罗曼,马玲国. 内镜经翼突入路切除中颅底恶性肿瘤30例临床分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 42-48. |
[3] | 谷少尉,侯元友,魏东敏,李文明,陈东彦,徐晨阳,雷大鹏,潘新良. 声门上喉癌舌瓣修补术后吞咽功能恢复[J]. 山东大学耳鼻喉眼学报, 2020, 34(5): 127-131. |
[4] | 聂帅,崔宇杰综述刘岩,文连姬审校. 阻塞性睡眠呼吸暂停与肿瘤相关性进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(5): 152-156. |
[5] | 青晓艳, 徐义全综述李超审校. 甲状腺未分化癌的分子机制研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 26-31. |
[6] | 倪烨钦,吴凡,荀延萍,赵盼,张仕蓉,周天晗,孙思涵,陆凯宁,罗定存. BRAFV600E突变比值在合并桥本甲状腺炎甲状腺乳头状癌中的初步研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 75-80. |
[7] | 宁玉东, 蔡永聪, 孙荣昊, 姜健, 周雨秋, 税春燕, 汪旭, 郑王虎, 何天琪, 李超. 甲状腺乳头状癌前上纵隔淋巴结转移临床病理特征初步分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 120-124. |
[8] | 武振,房居高. 经口腔前庭腔镜甲状腺手术进展与争议[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 13-18. |
[9] | 边晓敏, 韩光红综述于丹审校. 细胞外囊泡在头颈部肿瘤中的研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(1): 99-104. |
[10] | 蒋宁宁,王鹏来,袁长勇,黄晓峰,蒋常委,刘宗响,孙铁忠. 肿瘤转移抑制蛋白在舌鳞状细胞癌中的表达与临床意义[J]. 山东大学耳鼻喉眼学报, 2019, 33(6): 64-67. |
[11] | 李晓明. 喉癌治疗中喉功能保留的历史、现状和未来[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 1-5. |
[12] | 刘鸣. 早期声门癌的内镜治疗[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 6-9. |
[13] | 刘坤,张欣欣. 循环肿瘤细胞在头颈部鳞癌中的富集及检测[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 18-24. |
[14] | 黄若飞,陈立晓,陈歆维,於子卫,金斌,祝江才,董频. 喉异期喉重复癌[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 36-39. |
[15] | 孙笑晗,李娜. 喉保留策略在喉癌治疗中的应用—美国临床肿瘤学会临床实践指南更新(2017)介绍[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 40-42. |
|