山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (3): 171-180.doi: 10.6040/j.issn.1673-3770.0.2021.556
李琳1,高正文2,崔楠3,孙健平4,黄贤明5,崔静4
LI Lin1, GAO Zhengwen2, CUI Nan3, SUN Jianping4, HUANG Xianming5, CUI Jing4
摘要: 目的 从基因水平上探讨儿童慢性鼻窦炎(CRS)可能的分子生物学机制,为儿童CRS的防治提供理论依据。 方法 通过GEO Datasets数据库获取儿童CRS的基因表达谱GSE10406数据集,并筛选儿童CRS组与正常对照组的鼻窦黏膜组织上差异表达基因(DEGs),采用DAVID及GSEA对DEGs进行基因本体论(GO)分析和KEGG信号通路分析,采用String在线软件和Cytoscape软件对DEGs进行蛋白互作网络构建分析。 结果 以校正后的P值<0.05且∣log2 FC∣>2为标准共筛选出儿童CRS相关的DEGs有92个,其中57个上调DEGs,35个下调DEGs。GO分析结果显示上调的DEGs显著富集在吞噬作用、β细胞受体信号通路、对细菌的防御反应、免疫应答、浆膜外等生物学进程,KEGG分析显示上调的DEGs富集在唾液分泌等信号通路,下调的DEGs显著富集在视黄醇代谢、化学致癌、酪氨酸代谢等信号通路。PPI分析结果显示,49个儿童CRS相关DEGs参与了网络构建,该蛋白网络共有61条边,蛋白评价节点度为1.51,局部聚类系数为0.387,蛋白互作网络差异有统计学意义(P<0.001),前10位的关键基因分别为ASPM、NCAPG、TPX2、MCM10、TOP2A、STATH、ADH1C、ADH6、CYP26A1、UGT2A2。除STATH,其余9个关键基因编码的蛋白均在MCODE模块1和模块2中。 结论 儿童CRS可能通过其关键基因调节白介素、炎症、免疫反应、β细胞受体信号通路、对细菌的防御、唾液分泌等一系列生物学进程来影响其发生发展,可能的分子生物学机制需要进一步的探讨。
中图分类号:
[1] Heath J, Hartzell L, Putt C, et al. Chronic rhinosinusitis in children: pathophysiology, evaluation, and medical management[J]. Curr Allergy Asthma Rep, 2018, 18(7): 37. doi:10.1007/s11882-018-0792-8. [2] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(2): 81-100. doi:10.3760/cma.j.issn.1673-0860.2019.02.001. [3] Cho SH, Hamilos DL, Han DH, et al. Phenotypes of chronic rhinosinusitis[J]. J Allergy Clin Immunol Pract, 2020, 8(5): 1505-1511. doi:10.1016/j.jaip.2019.12.021. [4] 李华斌, 曹玉洁. 儿童鼻窦炎的临床诊疗进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(6): 16-19. doi:10.6040/j.issn.1673-3770.1.2019.057. LI Huabin, CAO Yujie. Diagnosis and treatment of pediatric rhinosinusitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(6): 16-19.doi:10.6040/j.issn.1673-3770.1.2019.057. [5] Mahdavinia M, Grammer LC 3rd. Chronic rhinosinusitis and age: is the pathogenesis different? [J]. Expert Rev Anti Infect Ther, 2013, 11(10): 1029-1040. doi:10.1586/14787210.2013.839380. [6] Snidvongs K, Sangubol M, Poachanukoon O. Pediatric versus adult chronic rhinosinusitis[J]. Curr Allergy Asthma Rep, 2020, 20(8): 29. doi:10.1007/s11882-020-00924-6. [7] Ghogomu N, Kern R. Chronic rhinosinusitis: the rationale for current treatments[J]. Expert Rev Clin Immunol, 2017, 13(3): 259-270. doi:10.1080/1744666X.2016.1220833. [8] 刘佳, 付勇. 儿童慢性鼻窦炎的外科治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(6): 29-33. doi:10.6040/j.issn.1673-3770.1.2019.060. LIU Jia, FU Yong. Advances in the surgical treatment of pediatric patients with chronic rhinosinusitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(6): 29-33.doi:10.6040/j.issn.1673-3770.1.2019.060. [9] Gilani S, Shin JJ. The burden and visit prevalence of pediatric chronic rhinosinusitis[J]. Otolaryngol Head Neck Surg, 2017, 157(6): 1048-1052. doi:10.1177/0194599817721177. [10] Bhattacharyya N, Villeneuve S, Joish VN, et al. Cost burden and resource utilization in patients with chronic rhinosinusitis and nasal polyps[J]. Laryngoscope, 2019, 129(9): 1969-1975. doi:10.1002/lary.27852. [11] 陈钢, 于洋, 王林娥. 慢性鼻-鼻窦炎伴鼻息肉基因表达谱的生物信息学分析[J]. 激光生物学报, 2020, 29(2): 161-167. doi:10.3969/j.issn.1007-7146.2020.02.010. CHEN Gang, YU Yang, WANG Line. Bioinformatics analysis of the gene expression profile in chronic rhinosinusitis with nasal polyps[J]. Acta Laser Biology Sinica, 2020, 29(2): 161-167. doi:10.3969/j.issn.1007-7146.2020.02.010. [12] Ryu G, Kim DK, Dhong HJ, et al. Immunological characteristics in refractory chronic rhinosinusitis with nasal polyps undergoing revision surgeries[J]. Allergy Asthma Immunol Res, 2019, 11(5): 664-676. doi:10.4168/aair.2019.11.5.664. [13] Chen FH, Hong HY, Sun YQ, et al. Nasal interleukin 25 as a novel biomarker for patients with chronic rhinosinusitis with nasal polyps and airway hypersensitiveness: a pilot study[J]. Ann Allergy Asthma Immunol, 2017, 119(4): 310-316.e2. doi:10.1016/j.anai.2017.07.012. [14] Tsybikov NN, Egorova EV, Kuznik BI, et al. Neuron-specific enolase in nasal secretions as a novel biomarker of olfactory dysfunction in chronic rhinosinusitis[J]. Am J Rhinol Allergy, 2016, 30(1): 65-69. doi:10.2500/ajra.2016.30.4264. [15] Drake VE, Rafaels N, Kim J. Peripheral blood eosinophilia correlates with hyperplastic nasal polyp growth[J]. Int Forum Allergy Rhinol, 2016, 6(9): 926-934. doi:10.1002/alr.21793. [16] Yu JQ, Kang X, Xiong YP, et al. Gene expression profiles of circular RNAs and microRNAs in chronic rhinosinusitis with nasal polyps[J]. Front Mol Biosci, 2021, 8: 643504. doi:10.3389/fmolb.2021.643504. [17] Kartush AG, Schumacher JK, Shah R, et al. Biologic agents for the treatment of chronic rhinosinusitis with nasal polyps[J]. Am J Rhinol Allergy, 2019, 33(2): 203-211. doi:10.1177/1945892418814768. [18] Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps(liberty np sinus-24 and liberty np sinus-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials[J]. Lancet, 2019, 394(10209): 1638-1650. doi:10.1016/S0140-6736(19)31881-1. [19] Gevaert P, Omachi TA, Corren J, et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials[J]. J Allergy Clin Immunol, 2020, 146(3): 595-605. doi:10.1016/j.jaci.2020.05.032. [20] Paramasivan S, Bassiouni A, Shiffer A, et al. The international sinonasal microbiome study: a multicentre, multinational characterization of sinonasal bacterial ecology[J]. Allergy, 2020, 75(8): 2037-2049. doi:10.1111/all.14276. [21] Man WH, de Steenhuijsen Piters WAA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health[J]. Nat Rev Microbiol, 2017, 15(5): 259-270. doi:10.1038/nrmicro.2017.14. [22] Drago L, Pignataro L, Torretta S. Microbiological aspects of acute and chronic pediatric rhinosinusitis[J]. J Clin Med, 2019, 8(2): E149. doi:10.3390/jcm8020149. [23] Welp AL, Bomberger JM. Bacterial community interactions during chronic respiratory disease[J]. Front Cell Infect Microbiol, 2020, 10: 213. doi:10.3389/fcimb.2020.00213. [24] Gu X, Yao XC, Liu DT. Up-regulation of microRNA-335-5p reduces inflammation via negative regulation of the TPX2-mediated AKT/GSK3β signaling pathway in a chronic rhinosinusitis mouse model[J]. Cell Signal, 2020, 70: 109596. doi:10.1016/j.cellsig.2020.109596. [25] Vergadi E, Ieronymaki E, Lyroni K, et al. Akt signaling pathway in macrophage activation and M1/M2 polarization[J]. J Immunol, 2017, 198(3): 1006-1014. doi:10.4049/jimmunol.1601515. |
[1] | 张丰珍, 王桂香, 魏沄沄, 张亚梅, 赵靖, 王华, 李宏彬, 李晓丹, 张杰. 合并轻度出血性疾病的扁桃体和(或)腺样体切除术患儿围手术期管理[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 66-72. |
[2] | 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14. |
[3] | 熊攀辉,沈暘,杨玉成. 基于表型和内在型的慢性鼻窦炎诊治进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 15-19. |
[4] | 姚爽,娄鸿飞. 慢性鼻窦炎的内在型研究进展及精准医疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 20-29. |
[5] | 石帅,郑泉,程雷. 度普利尤单抗在慢性鼻窦炎伴鼻息肉治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 36-42. |
[6] | 王欢,胡俐,余洪猛. 慢性鼻窦炎相关嗅觉功能障碍研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 43-49. |
[7] | 宜若男,陈福权. 嗜酸性粒细胞与嗅觉功能障碍[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 50-55. |
[8] | 谷钰,万鑫,肖自安. 中性粒细胞和嗜酸性粒细胞在慢性鼻窦炎中的相互影响及临床治疗思考[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 56-63. |
[9] | 林海,朱莹,张维天. 慢性鼻窦炎发病中离子通道作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 64-70. |
[10] | 乔新杰,赵玉林. 慢性鼻窦炎中上皮间质转化信号转导通路及其他相关因子的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 71-77. |
[11] | 黄丹怡,张婷,陈静,张薇. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83. |
[12] | 李佳倪,朱冬冬,孟粹达. 表观遗传学在慢性鼻窦炎伴鼻息肉发病机制中的作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 84-91. |
[13] | 曹轩,肖旭平,李云秋. 透明质酸在慢性鼻窦炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 104-109. |
[14] | 林一杭,李幼瑾. 肠道微生态在儿童变应性鼻炎中的研究现状[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 116-122. |
[15] | 刘一潼,周穗子,邱前辉. NLRP3炎症小体在慢性鼻窦炎和变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 142-146. |
|