山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (2): 135-142.doi: 10.6040/j.issn.1673-3770.0.2022.089
• 综述 • 上一篇
刘佳钰,樊慧明,邹游,陈始明
LIU Jiayu, FAN Huiming, ZOU You, CHEN Shiming
摘要: 鼻咽癌在我国华南地区高发,由于传统诊疗方式受到各种主观因素和客观因素的影响,且效率低下,因此探寻更为客观、稳定、高效的诊疗手段迫在眉睫。近年来,人工智能广泛应用于肿瘤的诊断和治疗当中,在图像识别、分割、风险预测及疗效预测等方面均显示出较高的准确性。此外,应用人工智能模型辅助临床医师诊疗工作可大大缩减所需时间、提高临床医师诊疗准确性并减小医师之间观察者变异度,为更好地诊治肿瘤创造了条件。论文就人工智能在鼻咽癌诊疗方面的应用现状及价值进行综述与总结,并对其未来发展方向进行展望。
中图分类号:
[1] Xia CF, Yu XQ, Zheng RS, et al. Spatial and temporal patterns of nasopharyngeal carcinoma mortality in China, 1973-2005[J]. Cancer Lett, 2017, 401: 33-38. doi:10.1016/j.canlet.2017.04.016 [2] Chen YP, Chan ATC, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. doi:10.1016/S0140-6736(19)30956-0 [3] King AD, Vlantis AC, Bhatia KS, et al. Primary nasopharyngeal carcinoma: diagnostic accuracy of MR imaging versus that of endoscopy and endoscopic biopsy[J]. Radiology, 2011, 258(2): 531-537. doi:10.1148/radiol.10101241 [4] King AD, Woo JKS, Ai QY, et al. Complementary roles of MRI and endoscopic examination in the early detection of nasopharyngeal carcinoma[J]. Ann Oncol, 2019, 30(6): 977-982. doi:10.1093/annonc/mdz106 [5] Savic M, Ma YH, Ramponi G, et al. Lung nodule segmentation with a region-based fast marching method[J]. Sensors(Basel), 2021, 21(5): 1908. doi:10.3390/s21051908 [6] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. doi:10.1038/nature21056 [7] Huang YQ, Liang CH, He L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer[J]. J Clin Oncol, 2016, 34(18): 2157-2164. doi:10.1200/JCO.2015.65.9128 [8] Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157. doi:10.3322/caac.21552 [9] Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare[J]. Nat Med, 2019, 25(1): 24-29. doi:10.1038/s41591-018-0316-z [10] Soffer S, Ben-Cohen A, Shimon O, et al. Convolutional neural networks for radiologic images: a radiologist's guide[J]. Radiology, 2019, 290(3): 590-606. doi:10.1148/radiol.2018180547 [11] Wong LM, King AD, Ai QYH, et al. Convolutional neural network for discriminating nasopharyngeal carcinoma and benign hyperplasia on MRI[J]. Eur Radiol, 2021, 31(6): 3856-3863. doi:10.1007/s00330-020-07451-y [12] Ke LR, Deng YS, Xia WX, et al. Development of a self-constrained 3D DenseNet model in automatic detection and segmentation of nasopharyngeal carcinoma using magnetic resonance images[J]. Oral Oncol, 2020, 110: 104862. doi:10.1016/j.oraloncology.2020.104862 [13] Wang HY, Han GQ, Li HJ, et al. A collaborative dictionary learning model for nasopharyngeal carcinoma segmentation on multimodalities MR sequences[J]. Comput Math Methods Med, 2020: 7562140. doi:10.1155/2020/7562140 [14] Daoud B, Morooka K, Kurazume R, et al. 3D segmentation of nasopharyngeal carcinoma from CT images using cascade deep learning[J]. Comput Med Imaging Graph, 2019, 77: 101644. doi:10.1016/j.compmedimag.2019.101644 [15] Wu BX, Khong PL, Chan T. Automatic detection and classification of nasopharyngeal carcinoma on PET/CT with support vector machine[J]. Int J Comput Assist Radiol Surg, 2012, 7(4): 635-646. doi:10.1007/s11548-011-0669-y [16] Li CF, Jing BZ, Ke LR, et al. Development and validation of an endoscopic images-based deep learning model for detection with nasopharyngeal malignancies[J]. Cancer Commun(Lond), 2018, 38(1): 59. doi:10.1186/s40880-018-0325-9 [17] Žuvela P, Lin K, Shu C, et al. Fiber-optic Raman spectroscopy with nature-inspired genetic algorithms enhances real-time in vivo detection and diagnosis of nasopharyngeal carcinoma[J]. Anal Chem, 2019, 91(13): 8101-8108. doi:10.1021/acs.analchem.9b00173 [18] Shu C, Yan HS, Zheng W, et al. Deep learning-guided fiberoptic Raman spectroscopy enables real-time in vivo diagnosis and assessment of nasopharyngeal carcinoma and post-treatment efficacy during endoscopy[J]. Anal Chem, 2021, 93(31): 10898-10906. doi:10.1021/acs.analchem.1c01559 [19] Diao SH, Hou JX, Yu H, et al. Computer-aided pathologic diagnosis of nasopharyngeal carcinoma based on deep learning[J]. Am J Pathol, 2020, 190(8): 1691-1700. doi:10.1016/j.ajpath.2020.04.008 [20] Chen X, Li YX, Li X, et al. An interpretable machine learning prognostic system for locoregionally advanced nasopharyngeal carcinoma based on tumor burden features[J]. Oral Oncol, 2021, 118: 105335. doi:10.1016/j.oraloncology.2021.105335 [21] Grégoire V, Ang K, Budach W, et al. Delineation of the neck node levels for head and neck tumors: a 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines[J]. Radiother Oncol, 2014, 110(1): 172-181. doi:10.1016/j.radonc.2013.10.010 [22] Shen C, Liu ZY, Wang ZQ, et al. Building CT radiomics based nomogram for preoperative esophageal cancer patients lymph node metastasis prediction[J]. Transl Oncol, 2018, 11(3): 815-824. doi:10.1016/j.tranon.2018.04.005 [23] Bayanati H, E Thornhill R, Souza CA, et al. Quantitative CT texture and shape analysis: can it differentiate benign and malignant mediastinal lymph nodes in patients with primary lung cancer? [J]. Eur Radiol, 2015, 25(2): 480-487. doi:10.1007/s00330-014-3420-6 [24] 陈海兵, 卫亚楠, 许晓泉, 等. 基于XGBoost人工智能结合CT构建甲状腺癌颈部淋巴结转移预测模型[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 40-45. doi:10.6040/j.issn.1673-3770.1.2020.031 CHEN Haibing, WEI Yanan, XU Xiaoquan, et al. Prediction of cervical lymph node metastasis in papillary thyroid cancer based on XGBoost artificial intelligence and enhanced computed tomography[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 40-45. doi:10.6040/j.issn.1673-3770.1.2020.031 [25] 刘渊, 程玉玉, 贺睿敏, 等. 基于机器学习的鼻咽癌转移淋巴结鉴别模型[J]. 中国医学物理学杂志, 2019, 36(11): 1350-1355. doi:10.3969/j.issn.1005-202X.2019.11.020 LIU Yuan, CHENG Yuyu, HE Ruimin, et al. Machine learning-based classification model of lymph node metastasis in nasopharyngeal carcinoma[J]. Chinese Journal of Medical Physics, 2019, 36(11): 1350-1355. doi:10.3969/j.issn.1005-202X.2019.11.020 [26] Mao YP, Xie FY, Liu LZ, et al. re-evaluation of 6th edition of AJCC staging system for nasopharyngeal carcinoma and proposed improvement based on magnetic resonance imaging[J]. Int J Radiat Oncol Biol Phys, 2009, 73(5): 1326-1334. doi:10.1016/j.ijrobp.2008.07.062 [27] Liu LT, Chen QY, Tang LQ, et al. Advanced-stage nasopharyngeal carcinoma: restaging system after neoadjuvant chemotherapy on the basis of MR imaging determines survival[J]. Radiology, 2017, 282(1): 171-181. doi:10.1148/radiol.2016152540 [28] Jing BZ, Zhang T, Wang ZX, et al. A deep survival analysis method based on ranking[J]. Artif Intell Med, 2019, 98: 1-9. doi:10.1016/j.artmed.2019.06.001 [29] Jing BZ, Deng YS, Zhang T, et al. Deep learning for risk prediction in patients with nasopharyngeal carcinoma using multi-parametric MRIs[J]. Comput Methods Programs Biomed, 2020, 197: 105684. doi:10.1016/j.cmpb.2020.105684 [30] Cui CY, Wang SX, Zhou J, et al. Machine learning analysis of image data based on detailed MR image reports for nasopharyngeal carcinoma prognosis[J]. Biomed Res Int, 2020: 8068913. doi:10.1155/2020/8068913 [31] Zhuo EH, Zhang WJ, Li HJ, et al. Radiomics on multi-modalities MR sequences can subtype patients with non-metastatic nasopharyngeal carcinoma(NPC)into distinct survival subgroups[J]. Eur Radiol, 2019, 29(10): 5590-5599. doi:10.1007/s00330-019-06075-1 [32] Xie CY, Du R, Ho JW, et al. Effect of machine learning re-sampling techniques for imbalanced datasets in 18 F-FDG PET-based radiomics model on prognostication performance in cohorts of head and neck cancer patients[J]. Eur J Nucl Med Mol Imaging, 2020, 47(12): 2826-2835. doi:10.1007/s00259-020-04756-4 [33] Tang LQ, Li CF, Li J, et al. Establishment and validation of prognostic nomograms for endemic nasopharyngeal carcinoma[J]. J Natl Cancer Inst, 2015, 108(1): 291. doi: 10.1093/jnci/djv291 [34] 林琰超. 基于深度学习的鼻咽癌分类诊断以及远转预测[D]. 青岛: 山东科技大学, 2018. [35] Wu XJ, Dong D, Zhang L, et al. Exploring the predictive value of additional peritumoral regions based on deep learning and radiomics: a multicenter study[J]. Med Phys, 2021, 48(5): 2374-2385. doi:10.1002/mp.14767 [36] Zhang L, Wu XJ, Liu J, et al. MRI-based deep-learning model for distant metastasis-free survival in locoregionally advanced nasopharyngeal carcinoma[J]. J Magn Reson Imaging, 2021, 53(1): 167-178. doi:10.1002/jmri.27308 [37] Zhang B, He X, Ouyang FS, et al. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma[J]. Cancer Lett, 2017, 403: 21-27. doi:10.1016/j.canlet.2017.06.004 [38] 孙笑晗, 李娜. 西班牙医学肿瘤学会鼻咽癌临床指南(2017)介绍[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 57-59. doi:10.6040/j.issn.1673-3770.1.2019.017 SUN Xiaohan, LI Na. Introduction to the SEOM clinical guidelines for nasopharyngeal cancer(2017)[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 57-59. doi:10.6040/j.issn.1673-3770.1.2019.017 [39] Chua ML, Sun Y, Supiot S. Advances in nasopharyngeal carcinoma - “west meets east”[J]. Br J Radiol, 2019, 92(1102): 20199004. doi:10.1259/bjr.20199004 [40] Kam MKM, Teo PML, Chau RMC, et al. Treatment of nasopharyngeal carcinoma with intensity-modulated radiotherapy: the Hong Kong experience[J]. Int J Radiat Oncol Biol Phys, 2004, 60(5): 1440-1450. doi:10.1016/j.ijrobp.2004.05.022 [41] Chen AM, Chin R, Beron P, et al. Inadequate target volume delineation and local-regional recurrence after intensity-modulated radiotherapy for human papillomavirus-positive oropharynx cancer[J]. Radiother Oncol, 2017, 123(3): 412-418. doi:10.1016/j.radonc.2017.04.015 [42] Lin L, Dou Q, Jin YM, et al. Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma[J]. Radiology, 2019, 291(3): 677-686. doi:10.1148/radiol.2019182012 [43] Yang G, Dai ZH, Zhang YW, et al. Multiscale local enhancement deep convolutional networks for the automated 3D segmentation of gross tumor volumes in nasopharyngeal carcinoma: a multi-institutional dataset study[J]. Front Oncol, 2022, 12: 827991. doi:10.3389/fonc.2022.827991 [44] Zhang JJ, Gu L, Han GH, et al. AttR2U-net: a fully automated model for MRI nasopharyngeal carcinoma segmentation based on spatial attention and residual recurrent convolution[J]. Front Oncol, 2021, 11: 816672. doi:10.3389/fonc.2021.816672 [45] 肖银燕, 全惠敏. 基于3D CNN的鼻咽癌CT图像分割[J]. 计算机工程与科学, 2019, 41(8): 1444-1452. doi:10.3969/j.issn.1007-130X.2019.08.015 XIAO Yinyan, QUAN Huimin. A nasopharyngeal carcinoma CT image segmentation method based on 3D CNNs[J]. Computer Engineering and Science, 2019, 41(8): 1444-1452. doi:10.3969/j.issn.1007-130X.2019.08.015 [46] Men K, Chen XY, Zhang Y, et al. Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images[J]. Front Oncol, 2017, 7: 315. doi:10.3389/fonc.2017.00315 [47] Hvid CA, Elstrøm UV, Jensen K, et al. Accuracy of software-assisted contour propagation from planning CT to cone beam CT in head and neck radiotherapy[J]. Acta Oncol, 2016, 55(11): 1324-1330. doi:10.1080/0284186X.2016.1185149 [48] Kim N, Chang JS, Kim YB, et al. Atlas-based auto-segmentation for postoperative radiotherapy planning in endometrial and cervical cancers[J]. Radiat Oncol, 2020, 15(1): 106. doi:10.1186/s13014-020-01562-y [49] 李金凯, 王沛沛, 曹远东, 等. AccuContour软件在头颈部危及器官自动勾画中的应用研究[J]. 中国医疗设备, 2021, 36(6): 66-70. doi:10.3969/j.issn.1674-1633.2021.06.017 LI Jinkai, WANG Peipei, CAO Yuandong, et al. Research on application of AccuContour software in automatic delineation of organs at risk in head and neck[J]. China Medical Devices, 2021, 36(6): 66-70. doi:10.3969/j.issn.1674-1633.2021.06.017 [50] 谢辉, 李庆. OIS软件在鼻咽癌危及器官自动勾画的临床应用研究[J]. 中国数字医学, 2020, 15(11): 36-39. doi:10.3969/j.issn.1673-7571.2020.11.009. XIE Hui, LI Qing. Research on the clinical application of OIS software in the automatic outlining of organ at risk of nasopharyngeal carcinoma[J]. China Digital Medicine, 2020, 15(11): 36-39. doi:10.3969/j.issn.1673-7571.2020.11.009. [51] Ibragimov B, Xing L. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks[J]. Med Phys, 2017, 44(2): 547-557. doi:10.1002/mp.12045. [52] 蒋家良, 罗勇, 何奕松, 等. 特征区域再聚焦提升全卷积神经网络勾画较小靶区准确度[J]. 中国医学物理学杂志, 2020, 37(1): 75-78. doi:10.3969/j.issn.1005-202X.2020.01.015. JIANG Jialiang, LUO Yong, HE Yisong, et al. Feature area refocusing for improving the accuracy of small target area segmentations by fully convolutional networks[J]. Chinese Journal of Medical Physics, 2020, 37(1): 75-78. doi:10.3969/j.issn.1005-202X.2020.01.015. [53] Zhong T, Huang X, Tang F, et al. Boosting-based cascaded convolutional neural networks for the segmentation of CT organs-at-risk in nasopharyngeal carcinoma[J]. Med Phys, 2019,16. doi:10.1002/mp.13825 [54] Liang SJ, Tang F, Huang X, et al. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning[J]. Eur Radiol, 2019, 29(4): 1961-1967. doi:10.1007/s00330-018-5748-9 [55] 董迪, 巩立鑫, 王坤, 等. 影像组学的临床应用[J]. 中国科学基金, 2021, 35(1): 85-91. doi:10.16262/j.cnki.1000-8217.2021.01.019 DONG Di, GONG Lixin, WANG Kun, et al. Clinical applications of radiomics[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(1): 85-91. doi:10.16262/j.cnki.1000-8217.2021.01.019 [56] Liu KY, Xia WX, Qiang MY, et al. Deep learning pathological microscopic features in endemic nasopharyngeal cancer: Prognostic value and protentional role for individual induction chemotherapy[J]. Cancer Med, 2020, 9(4): 1298-1306. doi:10.1002/cam4.2802 [57] Qiang MY, Li CF, Sun YY, et al. A prognostic predictive system based on deep learning for locoregionally advanced nasopharyngeal carcinoma[J]. J Natl Cancer Inst, 2021, 113(5): 606-615. doi:10.1093/jnci/djaa149 [58] Peng H, Dong D, Fang MJ, et al. Prognostic value of deep learning PET/CT-based radiomics: potential role for future individual induction chemotherapy in advanced nasopharyngeal carcinoma[J]. Clin Cancer Res, 2019, 25(14): 4271-4279. doi:10.1158/1078-0432.CCR-18-3065 [59] Zhao LN, Gong J, Xi YB, et al. MRI-based radiomics nomogram may predict the response to induction chemotherapy and survival in locally advanced nasopharyngeal carcinoma[J]. Eur Radiol, 2020, 30(1): 537-546. doi:10.1007/s00330-019-06211-x [60] Chen XY, Men K, Zhu J, et al. DVHnet: a deep learning-based prediction of patient-specific dose volume histograms for radiotherapy planning[J]. Med Phys, 2021, 48(6): 2705-2713. doi:10.1002/mp.14758 [61] Lan MY, Yang WL, Lin KT, et al. Using computational strategies to predict potential drugs for nasopharyngeal carcinoma[J]. Head Neck, 2014, 36(10): 1398-1407. doi:10.1002/hed.23464 [62] Zhong LZ, Dong D, Fang XL, et al. A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: a multicentre study[J]. E Bio Medicine, 2021, 70: 103522. doi:10.1016/j.ebiom.2021.103522 |
[1] | 任佳,吕丹,张银,孙佳莉,马兰,郑义涛,杨济民, 于凌昱,李波. 吞咽生命质量量表联合纤维内镜下吞咽功能检查技术在鼻咽癌放化疗后吞咽障碍患者中的应用[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 83-88. |
[2] | 华红利,李松,陶泽璋. 人工智能在鼻咽癌诊疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 113-119. |
[3] | 黄天泽,陈迪,李莹. 机器学习在眼表疾病诊断及角膜手术中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 13-19. |
[4] | 周宇翔,,苗北平,卢永田. 首诊鼻咽癌内镜手术的治疗进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 108-112. |
[5] | 冯成敏,敬一丹,刘海,王冰. 咽喉部鳞状细胞癌细胞系[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 113-124. |
[6] | 王迪,程金章,于丹. 基于机器学习的人工智能技术在耳鼻喉科临床诊疗中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 125-131. |
[7] | 李静静,武欣欣,毛宁,郑桂彬,牟亚魁,初同朋,贾传亮,郑海涛,米佳,宋西成. 基于CT影像组学诺模图术前预测甲状腺乳头状癌颈部中央区淋巴结转移的研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 51-59. |
[8] | 王中卫,杨林,郭亚,孙斌,王亚利,马秀龙,任宏涛,包兴. 鼻咽癌患者miR-429、miR-200C表达与预后关系分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 81-86. |
[9] | 谭玉芳,易天华. 鼻咽癌放疗后突发性聋18例[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 35-39. |
[10] | 范黎,黎越,徐细明. 鼻咽癌同步放化疗前后炎性指标变化及预测价值[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 36-41. |
[11] | 韩继波,邹游,杨蕊,陶泽璋. Notch受体调控上皮-间质转化对鼻咽癌细胞顺铂耐药的影响[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 105-110. |
[12] | 陈海兵, 卫亚楠, 许晓泉, 陈曦. 基于XGBoost人工智能结合CT构建甲状腺癌颈部淋巴结转移预测模型[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 40-45. |
[13] | 朱志玲,李松,管国芳. 人工智能在耳鼻咽喉头颈外科的运用及展望[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 115-120. |
[14] | 陈雪松,付伟伟,刘江涛. 中性粒细胞淋巴细胞比值和血小板淋巴细胞比值对调强放疗鼻咽癌患者的预后价值[J]. 山东大学耳鼻喉眼学报, 2020, 34(1): 50-53. |
[15] | 张剑利,陈伟雄,陈瑞开,邝德斌,庞艺施. 鼻咽癌放疗后远期吞咽功能的纤维喉镜评估[J]. 山东大学耳鼻喉眼学报, 2019, 33(6): 56-59. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 488
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1062
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|