Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2021, Vol. 35 ›› Issue (5): 98-104.doi: 10.6040/j.issn.1673-3770.0.2020.365
Previous Articles Next Articles
WANG Yuting,WANG Jiaxi
CLC Number:
[1] Cheng L, Chen JJ, Fu QL, et al. Chinese society of allergy guidelines for diagnosis and treatment of allergic rhinitis[J]. Allergy Asthma Immunol Res, 2018, 10(4): 300-353. doi:10.4168/aair.2018.10.4.300. [2] Mehta A, Baltimore D. MicroRNAs as regulatory elements in immune system logic[J]. Nat Rev Immunol, 2016, 16(5): 279-294. doi:10.1038/nri.2016.40. [3] Zhang XH, Zhang YN, Li HB, et al. Overexpression of miR-125b, a novel regulator of innate immunity, in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Am J Respir Crit Care Med, 2012, 185(2): 140-151. doi:10.1164/rccm.201103-0456oc. [4] Lu TX, Hartner J, Lim EJ, et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity[J]. J Immunol, 2011, 187(6): 3362-3373. doi:10.4049/jimmunol.1101235. [5] Chen XF, Zhang LJ, Zhang J, et al. MiR-151a is involved in the pathogenesis of atopic dermatitis by regulating interleukin-12 receptor β2[J]. Exp Dermatol, 2018, 27(4): 427-432. doi:10.1111/exd.13276. [6] Suojalehto H, Lindström I, Majuri ML, et al. Altered microRNA expression of nasal mucosa in long-term asthma and allergic rhinitis[J]. Int Arch Allergy Immunol, 2014, 163(3): 168-178. doi:10.1159/000358486. [7] Liu X, Ren Y, Sun X, et al. Bioinformatics-based approaches predict that MIR-17-5P functions in the pathogenesis of seasonal allergic rhinitis through regulating ABCA1 and CD69[J]. Am J Rhinol Allergy, 2019, 33(3): 269-276. doi:10.1177/1945892418823388. [8] Dunlop J, Matsui E, Sharma HP. Allergic rhinitis: environmental determinants[J]. Immunol Allergy Clin North Am, 2016, 36(2): 367-377. doi:10.1016/j.iac.2015.12.012. [9] Yu SY, Yehia G, Wang JF, et al. Global ablation of the mouse Rab11a gene impairs early embryogenesis and matrix metalloproteinase secretion[J]. J Biol Chem, 2014, 289(46): 32030-32043. doi:10.1074/jbc.M113.538223. [10] Wang J, Cui Z, Liu L, et al. MiR-146a mimic attenuates murine allergic rhinitis by downregulating TLR4/TRAF6/NF-κB pathway[J]. Immunotherapy, 2019, 11(13): 1095-1105. doi:10.2217/imt-2019-0047. [11] Xiao L, Jiang L, Hu Q, et al. MicroRNA-133b Ameliorates Allergic Inflammation and Symptom in Murine Model of Allergic Rhinitis by Targeting Nlrp3[J]. Cellular Physiology and Biochemistry,2017,42:901-912. doi: 10.1159/000478645 [12] Tomazic PV, Birner-grueberger R, Leitner A, et al. Seasonal proteome changes of nasal mucus reflect perennial inflammatory response and reduced defence mechanisms and plasticity in allergic rhinitis[J]. J Proteomics,2016,133:153-160. doi: 10.1016/j.jprot.2015.12.021. [13] Shah SA, Ishinaga H, Hou B, et al. Effects of interleukin-31 on MUC5AC gene expression in nasal allergic inflammation[J]. Pharmacology, 2013, 91(3/4): 158-164. doi:10.1159/000346609. [14] Teng YS, Zhang RX, Liu CH, et al. miR-143 inhibits interleukin-13-induced inflammatory cytokine and mucus production in nasal epithelial cells from allergic rhinitis patients by targeting IL13Rα1[J]. Biochem Biophys Res Commun, 2015, 457(1): 58-64. doi:10.1016/j.bbrc.2014.12.058. [15] Corren J. Role of interleukin-13 in asthma[J]. Curr Allergy Asthma Rep, 2013, 13(5): 415-420. doi:10.1007/s11882-013-0373-9. [16] Gao Y, Yu Z. MicroRNA-16 inhibits interleukin-13-induced inflammatory cytokine secretion and mucus production in nasal epithelial cells by suppressing the IκB kinase β/nuclear factor-κB pathway[J]. Mol Med Rep, 2018, 18(4): 4042-4050. doi:10.3892/mmr.2018.9394. [17] Zhao CY, Wang W, Yao HC, et al. SOCS3 is upregulated and targeted by miR30a-5p in allergic rhinitis[J]. Int Arch Allergy Immunol, 2018, 175(4): 209-219. doi:10.1159/000486857. [18] Luo XQ, Shao JB, Xie RD, et al. Micro RNA-19a interferes with IL-10 expression in peripheral dendritic cells of patients with nasal polyposis[J]. Oncotarget, 2017, 8(30): 48915-48921. doi:10.18632/oncotarget.16555. [19] Moreira AP, Cavassani KA, Hullinger R, et al. Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore-induced allergic airway disease[J]. J Allergy Clin Immunol, 2010, 126(4): 712-721.e7. doi:10.1016/j.jaci.2010.06.010. [20] Wang L, Liu XY, Song XC, et al. MiR-202-5p promotes M2 polarization in allergic rhinitis by targeting MATN2[J]. Int Arch Allergy Immunol, 2019, 178(2): 119-127. doi:10.1159/000493803. [21] Anderson EL, Kobayashi T, Iijima K, et al. IL-33 mediates reactive eosinophilopoiesis in response to airborne allergen exposure[J]. Allergy, 2016, 71(7): 977-988. doi:10.1111/all.12861. [22] 江远航. miR-155对小鼠ILC2分泌Th2型细胞因子的影响[D]. 南昌: 南昌大学, 2019. [23] Yamada Y, Kosaka K, Miyazawa T, et al. miR-142-3p enhances FcεRI-mediated degranulation in mast cells[J]. Biochem Biophys Res Commun, 2014, 443(3): 980-986. doi:10.1016/j.bbrc.2013.12.078. [24] Xu H, Gu LN, Yang QY, et al. MiR-221 promotes IgE-mediated activation of mast cells degranulation by PI3K/Akt/PLCγ/Ca(2+)pathway[J]. J Bioenerg Biomembr, 2016, 48(3): 293-299. doi:10.1007/s10863-016-9659-7. [25] Ping He, Jin Ni, Hui Zhao, et al. Diagnostic value of miR-221 and miR-142-3p expressions of allergic rhinitis and miR-221 level is positively correlated with disease severity[J]. Int J Clin Exp Med,2017,10(5):7834-7842. [26] Banerjee A, Schambach F, DeJong CS, et al. Micro-RNA-155 inhibits IFN-γ signaling in CD4+ T cells[J]. Eur J Immunol, 2010, 40(1): 225-231. doi:10.1002/eji.200939381. [27] Chen Z, Deng Y, Li F, et al. MicroRNA-466a-3p attenuates allergic nasal inflammation in mice by targeting GATA3[J]. Clin Exp Immunol, 2019, 197(3): 366-375. doi:10.1111/cei.13312. [28] Deng YQ, Yang YQ, Wang SB, et al. Intranasal administration of lentiviral miR-135a regulates mast cell and allergen-induced inflammation by targeting GATA-3[J]. PLoS One, 2015, 10(9): e0139322. doi:10.1371/journal.pone.0139322. [29] Saad K, Zahran AM, Elsayh KI, et al. Variation of regulatory T lymphocytes in the peripheral blood of children with allergic rhinitis[J]. Arch Immunol Ther Exp(Warsz), 2018, 66(4): 307-313. doi:10.1007/s00005-017-0498-y. [30] Wang L, Yang X, Li W, et al. MiR-202-5p/MATN2 are associated with regulatory T-cells differentiation and function in allergic rhinitis[J]. Hum Cell, 2019, 32(4): 411-417. doi:10.1007/s13577-019-00266-0. [31] Liu HJ, Zhang AF, Zhao N, et al. Role of miR-146a in enforcing effect of specific immunotherapy on allergic rhinitis[J]. Immunol Investig, 2016, 45(1): 1-10. doi:10.3109/08820139.2015.1085390. [32] Chen RF, Huang HC, Ou CY, et al. MicroRNA-21 expression in neonatal blood associated with antenatal immunoglobulin E production and development of allergic rhinitis[J]. Clin Exp Allergy, 2010, 40(10): 1482-1490. doi:10.1111/j.1365-2222.2010.03592.x. [33] Puxeddu I, Berkman N, Ribatti D, et al. Osteopontin is expressed and functional in human eosinophils[J]. Allergy, 2010, 65(2): 168-174. doi:10.1111/j.1398-9995.2009.02148.x. [34] Liu WL, Zeng QX, Luo RZ. Correlation between serum osteopontin and miR-181a levels in allergic rhinitis children[J]. Mediat Inflamm, 2016, 2016: 1-6. doi:10.1155/2016/9471215. [35] Moorchung N, Srivastava AN, Gupta NK, et al. Cytokine gene polymorphisms and the pathology of chronic gastritis[J]. Singapore Med J, 2007, 48(5): 447-454. [36] Mu ZL, Wang YL. The influence of overexpressions of microRNA-375 on the expression of thymic stromal lymphopoietin and IL-4, IL-13 in allergic rhinitis mice[J]. Asian Pac J Trop Med, 2018, 11(13): 43. doi:10.4103/1995-7645.243111. [37] Wang T, Chen D, Wang PH, et al. miR-375 prevents nasal mucosa cells from apoptosis and ameliorates allergic rhinitis via inhibiting JAK2/STAT3 pathway[J]. Biomed Pharmacother, 2018, 103: 621-627. doi:10.1016/j.biopha.2018.04.050. [38] Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines[J].Immunnity,2005,23(5):479-490.doi:10.1016/j.immuni.2005.09.015. [39] Suzukawa M, Iikura M, Koketsu R, et al. An IL-1 cytokine member, IL-33, induces human basophil activation via its ST2 receptor[J]. J Immunol, 2008, 181(9): 5981-5989. doi:10.4049/jimmunol.181.9.5981. [40] Liu HC, Liao Y, Liu CQ. miR-487b mitigates allergic rhinitis through inhibition of the IL-33/ST2 signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(23): 8076-8083. doi:10.26355/eurrev_201812_16497. [41] Cui XH, Guo Y, Wang QR, et al. MiR-199-3p-Dnmt3a-STAT3 signalling pathway in ovalbumin-induced allergic rhinitis[J]. Exp Physiol, 2019, 104(8): 1286-1295. doi:10.1113/EP087751. [42] Chen CH, Wang CZ, Wang YH, et al. Effects of low-level laser therapy on M1-related cytokine expression in monocytes via histone modification[J]. Mediat Inflamm, 2014, 2014: 1-13. doi:10.1155/2014/625048. [43] Beier UH, Akimova T, Liu YJ, et al. Histone/protein deacetylases control Foxp3 expression and the heat shock response of T-regulatory cells[J]. Curr Opin Immunol, 2011, 23(5): 670-678. doi:10.1016/j.coi.2011.07.002. [44] Beier UH, Wang LQ, Bhatti TR, et al. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival[J]. Mol Cell Biol, 2011, 31(5): 1022-1029. doi:10.1128/MCB.01206-10. [45] Hu D, Zhang Z, Ke X, et al. A functional variant of miRNA-149 confers risk for allergic rhinitis and comorbid asthma in Chinese children[J]. Int J Immunogenetics, 2017, 44(2): 62-70. doi:10.1111/iji.12307. [46] 陆文敏. TGF-β通路基因microRNAs结合区单核苷酸多态性与变应性鼻炎的关联研究[D]. 南京: 南京医科大学, 2014. |
[1] | WANG Xingxin, YANG Xinyu, ZHENG Xiaojun, DING Lin, SHENG Yawen, BI Xiaoyun, YANG Jiguo. Acupoint application therapy for adenoid hypertrophy in children: a case report [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 122-124. |
[2] | LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70. |
[3] | LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91. |
[4] | NI Jingzi, WAN Wenjin,CHENG Lei. Research progress on health-related quality of life in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 110-115. |
[5] | LIN Yihang,LI Youjin. Research progress on gut microbiome in children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 116-122. |
[6] | LIU Zhen,SONG Xicheng. Mechanisms and research progress of pyroptosis in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 123-129. |
[7] | LIU Yitong, ZHOU Suizi,QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146. |
[8] | GONG Xiaoyang, CHENG Lei. Analysis of proportion of outpatients with allergic rhinitis during the coronavirus infectious disease 2019 pandemic [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 245-255. |
[9] | ZHANG Yaqi, LIU Huimin, CAO Linman, WANG Ziyu, LIN Xu, LI Yanping, XUE Gang, WU Jingfang. Expression and significance of the MAPK,PI3K-AKT,NF-κB pathways of allergic rhinitis in mice [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 254-259. |
[10] | LU Weili, JIANG Tao, LI Xianhua. Analysis of sIgE in polysensitized children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 260-265. |
[11] | HUANG Kaiyue, LI Xueqing, HAN Gouxin, ZHANG Qinxiu. Meta-analysis of acupoint catgut embedding in the treatment of allergic rhinitis based on the theory of “lung and spleen” [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 266-274. |
[12] | ZHU Zhengru, ZHANG Xiaobing. Meta-analysis of the curative effect of traditional Chinese medicine decoction combined with conventional western medicine on allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 281-289. |
[13] | HAN Yingying,LI Yanzhong. Obstructive sleep apnea hypopnea syndrome and subclinical arteriosclerosis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 126-132. |
[14] | PANG Chong, BIAN Sainan, ZHANG Bing, YIN Xu, LU Yingxia, YE Pengfei, WANG Zhan, ZHAO Jing, GAO Yan, GUAN Kai. Short-term effect of Dermatophagoides farinae specific sublingual immunotherapy for children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 70-74. |
[15] | WANG Fei, LIU Yuying, XIAO Qiyi, DING Jian, GAO Shang, MAO Wei. A study on the associations between psychological factors and allergic rhinitis among residents [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 28-31. |
|