Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (4): 153-159.doi: 10.6040/j.issn.1673-3770.0.2022.192
CUI Ning, WANG Yunmeng, YANG Jingpu
CLC Number:
[1] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(2): 81-100. doi:10.3760/cma.j.issn.1673-0860.2019.02.001 [2] Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020[J]. Rhinology, 2020, 58(Suppl S29): 1-464. doi:10.4193/Rhin20.600 [3] Cho SH, Hamilos DL, Han DH, et al. Phenotypes of chronic rhinosinusitis[J]. J Allergy Clin Immunol Pract, 2020, 8(5): 1505-1511. doi:10.1016/j.jaip.2019.12.021 [4] Lou HF, Meng YF, Piao YS, et al. Cellular phenotyping of chronic rhinosinusitis with nasal polyps[J]. Rhinology, 2016, 54(2): 150-159. doi:10.4193/Rhino15.271 [5] Stevens WW, Peters AT, Tan BK, et al. Associations between inflammatory endotypes and clinical presentations in chronic rhinosinusitis[J]. J Allergy Clin Immunol Pract, 2019, 7(8): 2812-2820.e3. doi:10.1016/j.jaip.2019.05.009 [6] Kato A, Schleimer RP, Bleier BS. Mechanisms and pathogenesis of chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2022, 149(5): 1491-1503. doi:10.1016/j.jaci.2022.02.016 [7] Wang XD, Zhang N, Bo MY, et al. Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania[J]. J Allergy Clin Immunol, 2016, 138(5): 1344-1353. doi:10.1016/j.jaci.2016.05.041 [8] Eifan AO, Durham SR. Pathogenesis of rhinitis[J]. Clin Exp Allergy, 2016, 46(9): 1139-1151. doi:10.1111/cea.12780 [9] Vivier E, Artis D, Colonna M, et al. Innate lymphoid cells: 10 years on[J]. Cell, 2018, 174(5): 1054-1066. doi:10.1016/j.cell.2018.07.017 [10] Spits H, di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling[J]. Nat Immunol, 2011, 12(1): 21-27. doi:10.1038/ni.1962 [11] Ebbo M, Crinier A, Vély F, et al. Innate lymphoid cells: major players in inflammatory diseases[J]. Nat Rev Immunol, 2017, 17(11): 665-678. doi:10.1038/nri.2017.86 [12] Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity[J]. J Allergy Clin Immunol, 2015, 135(3): 626-635. doi:10.1016/j.jaci.2014.11.001 [13] Bernink JH, Peters CP, Munneke M, et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues[J]. Nat Immunol, 2013, 14(3): 221-229. doi:10.1038/ni.2534 [14] Morita H, Moro K, Koyasu S. Innate lymphoid cells in allergic and nonallergic inflammation[J]. J Allergy Clin Immunol, 2016, 138(5): 1253-1264. doi:10.1016/j.jaci.2016.09.011 [15] Eberl G, Marmon S, Sunshine MJ, et al. An essential function for the nuclear receptor RORgamma(t)in the generation of fetal lymphoid tissue inducer cells[J]. Nat Immunol, 2004, 5(1): 64-73. doi:10.1038/ni1022 [16] Fort MM, Cheung J, Yen D, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo[J]. Immunity, 2001, 15(6): 985-995. doi:10.1016/s1074-7613(01)00243-6 [17] Neill DR, Wong SH, Bellosi A, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity[J]. Nature, 2010, 464(7293): 1367-1370. doi:10.1038/nature08900 [18] Mjösberg JM, Trifari S, Crellin NK, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161[J]. Nat Immunol, 2011, 12(11): 1055-1062. doi:10.1038/ni.2104 [19] Walford HH, Lund SJ, Baum RE, et al. Increased ILC2s in the eosinophilic nasal polyp endotype are associated with corticosteroid responsiveness[J]. Clin Immunol, 2014, 155(1): 126-135. doi:10.1016/j.clim.2014.09.007 [20] Miljkovic D, Bassiouni A, Cooksley C, et al. Association between group 2 innate lymphoid cells enrichment, nasal polyps and allergy in chronic rhinosinusitis[J]. Allergy, 2014, 69(9): 1154-1161. doi:10.1111/all.12440 [21] Stevens WW, Kato A. Group 2 innate lymphoid cells in nasal polyposis[J]. Ann Allergy Asthma Immunol, 2021, 126(2): 110-117. doi:10.1016/j.anai.2020.08.001 [22] Tojima I, Kouzaki H, Shimizu S, et al. Group 2 innate lymphoid cells are increased in nasal polyps in patients with eosinophilic chronic rhinosinusitis[J]. Clin Immunol, 2016, 170: 1-8. doi:10.1016/j.clim.2016.07.010 [23] Hopkins C. Chronic rhinosinusitis with nasal polyps[J]. N Engl J Med, 2019, 381(1): 55-63. doi:10.1056/NEJMcp1800215 [24] Oliphant CJ, Hwang YY, Walker JA, et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+)T cells potentiates type 2 immunity and promotes parasitic helminth expulsion[J]. Immunity, 2014, 41(2): 283-295. doi:10.1016/j.immuni.2014.06.016 [25] Pelly VS, Kannan Y, Coomes SM, et al. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection[J]. Mucosal Immunol, 2016, 9(6): 1407-1417. doi:10.1038/mi.2016.4 [26] Halim TY, Steer CA, Mathä L, et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation[J]. Immunity, 2014, 40(3): 425-435. doi:10.1016/j.immuni.2014.01.011 [27] Wu JQ, Cui YL, Zhu WW, et al. Critical role of OX40/OX40L in ILC2-mediated activation of CD4+T cells during respiratory syncytial virus infection in mice[J]. Int Immunopharmacol, 2019, 76: 105784. doi:10.1016/j.intimp.2019.105784 [28] Halim TYF, Rana BMJ, Walker JA, et al. Tissue-restricted adaptive type 2 immunity is orchestrated by expression of the costimulatory molecule OX40L on group 2 innate lymphoid cells[J]. Immunity, 2018, 48(6): 1195-1207.e6. doi:10.1016/j.immuni.2018.05.003 [29] Shi LL, Song J, Xiong P, et al. Disease-specific T-helper cell polarizing function of lesional dendritic cells in different types of chronic rhinosinusitis with nasal polyps[J]. Am J Respir Crit Care Med, 2014, 190(6): 628-638. doi:10.1164/rccm.201402-0234OC [30] Maazi H, Patel N, Sankaranarayanan I, et al. ICOS: ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity[J]. Immunity, 2015, 42(3): 538-551. doi:10.1016/j.immuni.2015.02.007 [31] Schwartz C, Khan AR, Floudas A, et al. ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control[J]. J Exp Med, 2017, 214(9): 2507-2521. doi:10.1084/jem.20170051 [32] Ho J, Bailey M, Zaunders J, et al. Group 2 innate lymphoid cells(ILC2s)are increased in chronic rhinosinusitis with nasal polyps or eosinophilia[J]. Clin Exp Allergy, 2015, 45(2): 394-403. doi:10.1111/cea.12462 [33] Patel NN, Kohanski MA, Maina IW, et al. Solitary chemosensory cells producing interleukin-25 and group-2 innate lymphoid cells are enriched in chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol, 2018. doi:10.1002/alr.22142 [34] Ikutani M, Ogawa S, Yanagibashi T, et al. Elimination of eosinophils using anti-IL-5 receptor alpha antibodies effectively suppresses IL-33-mediated pulmonary arterial hypertrophy[J]. Immunobiology, 2018, 223(6/7): 486-492. doi:10.1016/j.imbio.2017.12.002 [35] Turner JE, Morrison PJ, Wilhelm C, et al. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation[J]. J Exp Med, 2013, 210(13): 2951-2965. doi:10.1084/jem.20130071 [36] Shaw JL, Fakhri S, Citardi MJ, et al. IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps[J]. Am J Respir Crit Care Med, 2013, 188(4): 432-439. doi:10.1164/rccm.201212-2227OC [37] Toki S, Goleniewska K, Zhang J, et al. TSLP and IL-33 reciprocally promote each other's lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation[J]. Allergy, 2020, 75(7): 1606-1617. doi:10.1111/all.14196 [38] Wong CK, Li PW, Lam CWK. Intracellular JNK, p38 MAPK and NF-kappaB regulate IL-25 induced release of cytokines and chemokines from costimulated T helper lymphocytes[J]. Immunol Lett, 2007, 112(2): 82-91. doi:10.1016/j.imlet.2007.07.002 [39] Ogasawara N, Poposki JA, Klingler AI, et al. Role of RANK-L as a potential inducer of ILC2-mediated type 2 inflammation in chronic rhinosinusitis with nasal polyps[J]. Mucosal Immunol, 2020, 13(1): 86-95. doi:10.1038/s41385-019-0215-8 [40] Ohne Y, Silver JS, Thompson-Snipes L, et al. Erratum: IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity[J]. Nat Immunol, 2016, 17(8): 1005. doi:10.1038/ni0816-1005a [41] Ogasawara N, Poposki JA, Klingler AI, et al. TNF induces production of type 2 cytokines in human group 2 innate lymphoid cells[J]. J Allergy Clin Immunol, 2020, 145(1): 437-440.e8. doi:10.1016/j.jaci.2019.09.001 [42] Salimi M, Stöger L, Liu W, et al. Cysteinyl leukotriene E4 activates human group 2 innate lymphoid cells and enhances the effect of prostaglandin D2 and epithelial cytokines[J]. J Allergy Clin Immunol, 2017, 140(4): 1090-1100.e11. doi:10.1016/j.jaci.2016.12.958 [43] Kato A. Group 2 innate lymphoid cells in airway diseases[J]. Chest, 2019, 156(1): 141-149. doi:10.1016/j.chest.2019.04.101 [44] Knipfer L, Schulz-Kuhnt A, Kindermann M, et al. A CCL1/CCR8-dependent feed-forward mechanism drives ILC2 functions in type 2-mediated inflammation[J]. J Exp Med, 2019, 216(12): 2763-2777. doi:10.1084/jem.20182111 [45] Hurrell BP, Shafiei Jahani P, Akbari O. Social networking of group two innate lymphoid cells in allergy and asthma[J]. Front Immunol, 2018, 9: 2694. doi:10.3389/fimmu.2018.02694 [46] Duerr CU, McCarthy CDA, Mindt BC, et al. Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells[J]. Nat Immunol, 2016, 17(1): 65-75. doi:10.1038/ni.3308 [47] Morita H, Kubo T, Rückert B, et al. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid[J]. J Allergy Clin Immunol, 2019, 143(6): 2190-2201.e9. doi:10.1016/j.jaci.2018.12.1018 [48] Lee GR. The balance of Th17 versus treg cells in autoimmunity[J]. Int J Mol Sci, 2018, 19(3): 730. doi:10.3390/ijms19030730 [49] Molofsky AB, van Gool F, Liang HE, et al. Interleukin-33 and interferon-γ counter-regulate group 2 innate lymphoid cell activation during immune perturbation[J]. Immunity, 2015, 43(1): 161-174. doi:10.1016/j.immuni.2015.05.019 [50] Rauber S, Luber M, Weber S, et al. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells[J]. Nat Med, 2017, 23(8): 938-944. doi:10.1038/nm.4373 [51] Rigas D, Lewis G, Aron JL, et al. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction[J]. J Allergy Clin Immunol, 2017, 139(5): 1468-1477.e2. doi:10.1016/j.jaci.2016.08.034 [52] Aron JL, Akbari O. Regulatory T cells and type 2 innate lymphoid cell-dependent asthma[J]. Allergy, 2017, 72(8): 1148-1155. doi:10.1111/all.13139 [53] Noval Rivas M, Burton OT, Oettgen HC, et al. IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function[J]. J Allergy Clin Immunol, 2016, 138(3): 801-811.e9. doi:10.1016/j.jaci.2016.02.030 [54] Sharma S, Watanabe S, Sivam A, et al. Peripheral blood and tissue T regulatory cells in chronic rhinosinusitis[J]. Am J Rhinol Allergy, 2012, 26(5): 371-379. doi:10.2500/ajra.2012.26.3800 [55] Shi J, Fan Y, Xu R, et al. Characterizing T-cell phenotypes in nasal polyposis in Chinese patients[J]. J Investig Allergol Clin Immunol, 2009, 19(4): 276-282 [56] van Bruaene N, Pérez-Novo CA, Basinski TM, et al. T-cell regulation in chronic paranasal sinus disease[J]. J Allergy Clin Immunol, 2008, 121(6): 1435-1441, 1441.e1-3. doi:10.1016/j.jaci.2008.02.018 [57] Li Y, Wang W, Ying S, et al. A potentia role of group 2 innate lymphoid cells in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Allergy Asthma Immunol Res, 2021, 13(3): 363-374. doi:10.4168/aair.2021.13.3.363 |
[1] | AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14. |
[2] | XIONG Panhui, SHEN Yang,YANG Yucheng. Advancements in the diagnosis and treatment of chronic sinusitis based on phenotypes and endotypes [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 15-19. |
[3] | YAO Shuang,LOU Hongfei. Advances in endotypes and precision medicine in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 20-29. |
[4] | LIANG Xu,SHI Li. Research progress in biologic targeted drug therapy for chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 30-35. |
[5] | SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42. |
[6] | WANG Huan, HU Li,YU Hongmeng. Research progress of olfactory dysfunction in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 43-49. |
[7] | YI Ruonan,CHEN Fuquan. Eosinophils and Olfactory Dysfunction [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 50-55. |
[8] | GU Yu, WAN Xin,XIAO Zi'an. The interaction between neutrophils and eosinophils in chronic rhinosinusitis and the implications on treatment options [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 56-63. |
[9] | LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70. |
[10] | QIAO Xinjie,. Research progress on the signal transduction pathway and other factors related to epithelial-mesenchymal transformation in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 71-77. |
[11] | HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83. |
[12] | LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91. |
[13] | YU Longgang,JIANG Yan. Research progress on the correlation between nasal bacterial microbiome and chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 92-97. |
[14] | CAO Xuan,XIAO Xuping, LI Yunqiu. Advances in the application of hyaluronic acid in chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 104-109. |
[15] | WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141. |
|