[1] |
Fenwick EK, Bansback N, Gan ATL, et al. Validation of a novel diabetic retinopathy utility index using discrete choice experiments[J]. Br J Ophthalmol, 2020, 104(2): 188-193. doi:10.1136/bjophthalmol-2019-313899
|
[2] |
Wang HY, Fang JW, Chen FG, et al. Metabolomic profile of diabetic retinopathy: a GC-TOFMS-based approach using vitreous and aqueous humor[J]. Acta Diabetol, 2020, 57(1): 41-51. doi:10.1007/s00592-019-01363-0
|
[3] |
López-Contreras AK, Martínez-Ruiz MG, Olvera-Montaño C, et al. Importance of the use of oxidative stress biomarkers and inflammatory profile in aqueous and vitreous humor in diabetic retinopathy[J]. Antioxidants, 2020, 9(9): 891. doi:10.3390/antiox9090891
|
[4] |
Hsia DS, Rasouli N, Pittas AG, et al. Implications of the hemoglobin glycation index on the diagnosis of prediabetes and diabetes[J]. J Clin Endocrinol Metab, 2020, 105(3): e130-e138. doi:10.1210/clinem/dgaa029
|
[5] |
Wang SB, Gu LF, Chen JW, et al. Association of hemoglobin glycation index and glycation gap with cardiovascular disease among US adults[J]. Diabetes Res Clin Pract, 2022, 190: 109990. doi:10.1016/j.diabres.2022.109990
|
[6] |
Wang ZW, Liu YH, Xie J, et al. Association between hemoglobin glycation index and subclinical myocardial injury in the general population free from cardiovascular disease[J]. Nutr Metab Cardiovasc Dis, 2022, 32(2): 469-478. doi:10.1016/j.numecd.2021.10.018
|
[7] |
Hempe JM, Hsia DS. Variation in the hemoglobin glycation index[J]. J Diabetes Complications, 2022, 36(7): 108223. doi:10.1016/j.jdiacomp.2022.108223
|
[8] |
Klein KR, Franek E, Marso S, et al. Hemoglobin glycation index, calculated from a single fasting glucose value, as a prediction tool for severe hypoglycemia and major adverse cardiovascular events in DEVOTE[J]. BMJ Open Diabetes Res Care, 2021, 9(2): e002339. doi:10.1136/bmjdrc-2021-002339
|
[9] |
Ibarra-Salce R, Pozos-Varela FJ, Martinez-Zavala N, et al. Correlation between hemoglobin glycation index measured by continuous glucose monitoring with complications in type 1 diabetes[J]. Endocr Pract, 2023, 29(3): 162-167. doi:10.1016/j.eprac.2023.01.001[PubMed]
|
[10] |
陈晓正, 李珍梅, 林慧卿, 等. 糖化血红蛋白变异指数与糖尿病视网膜病变的相关性研究[J]. 中国糖尿病杂志, 2018, 26(3): 188-192. doi:10.3969/j.issn.1006-6187.2018.03.002 CHEN Xiaozheng, LI Zhenmei, LIN Huiqing, et al. Relationship between glycated hemoglobin variability index and risk of diabetic retinopathy in patients with type 2 diabetes[J]. Chinese Journal of Diabetes, 2018, 26(3): 188-192. doi:10.3969/j.issn.1006-6187.2018.03.002
|
[11] |
Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591. doi:10.1016/j.ophtha.2021.04.027
|
[12] |
唐婷, 赵勋, 李金萍. 糖尿病性视网膜病变患者空腹血糖、糖化血红蛋白及血清C肽水平与眼底病变严重程度的相关性分析[J]. 糖尿病新世界, 2023, 26(9): 173-177. doi:10.16658/j.cnki.1672-4062.2023.09.173 TANG Ting, ZHAO Xun, LI Jinping. Correlation analysis of fasting blood glucose, glycosylated hemoglobin and serum C-peptide levels with the severity of fundus lesions in patients with diabetic retinopathy[J]. Diabetes New World, 2023, 26(9): 173-177. doi:10.16658/j.cnki.1672-4062.2023.09.173
|
[13] |
Li PP, Zhang P, Guan DW, et al. Changes in racial and ethnic disparities in glucose-lowering drug utilization and glycated haemoglobin A1c in US adults with diabetes: 2005-2018[J]. Diabetes Obes Metab, 2023, 25(2): 516-525. doi:10.1111/dom.14894
|
[14] |
Xie SS, Luo XT, Dong MH, et al. Association between hemoglobin glycation index and metabolic syndrome in middle-aged and older people[J]. Diabetes Metab Syndr Obes, 2023, 16: 1471-1479. doi:10.2147/DMSO.S406660
|
[15] |
胡佳琪, 周倩倩, 徐慧君, 等. HbA1c变异性对糖尿病视网膜病变的影响及其截断值的判定[J]. 眼科新进展, 2020, 40(10): 967-971. doi:10.13389/j.cnki.rao.2020.0217 HU Jiaqi, ZHOU Qianqian, XU Huijun, et al. Effect of HbA1c variability on diabetic retinopathy and its cut-off value for early diabetic retinopathy diagnosis[J]. Recent Advances in Ophthalmology, 2020, 40(10): 967-971. doi:10.13389/j.cnki.rao.2020.0217
|
[16] |
Sanz-González SM, García-Medina JJ, Zanón-Moreno V, et al. Clinical and molecular-genetic insights into the role of oxidative stress in diabetic retinopathy: antioxidant strategies and future avenues[J]. Antioxidants, 2020, 9(11): 1101. doi:10.3390/antiox9111101
|
[17] |
Hsueh YJ, Chen YN, Tsao YT, et al. The pathomechanism, antioxidant biomarkers, and treatment of oxidative stress-related eye diseases[J]. Int J Mol Sci, 2022, 23(3): 1255. doi:10.3390/ijms23031255
|
[18] |
Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes[J]. J Inflamm Res, 2020, 13: 1057-1073. doi:10.2147/JIR.S275595
|
[19] |
Li M, Tian MM, Wang YL, et al. Updates on RPE cell damage in diabetic retinopathy(Review)[J]. Mol Med Rep, 2023, 28(4): 185. doi:10.3892/mmr.2023.13072
|
[20] |
Tabatabaei-Malazy O, Peimani M, Mohseni S, et al. Therapeutic effects of dietary antioxidative supplements on the management of type 2 diabetes and its complications; umbrella review of observational/trials meta-analysis studies[J]. J Diabetes Metab Disord, 2022, 21(2): 1833-1859. doi:10.1007/s40200-022-01069-1
|
[21] |
Yang J, Liu ZS. Mechanistic pathogenesis of endothelial dysfunction in diabetic nephropathy and retinopathy[J]. Front Endocrinol, 2022, 13: 816400. doi:10.3389/fendo.2022.816400
|
[22] |
王娇娇, 李苗, 宋宗明. 糖尿病视网膜病变的机制和细胞模型研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 93-99. doi: 10.6040/j.issn.1673-3770.0.2021.203 WANG Jiaojiao, LI Miao, SONG Zongming. Progress in diabetic retinopathy mechanisms and cellular models[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 93-99. doi: 10.6040/j.issn.1673-3770.0.2021.203
|
[23] |
Yumnamcha T, Guerra M, Singh LP, et al. Metabolic dysregulation and neurovascular dysfunction in diabetic retinopathy[J]. Antioxidants, 2020, 9(12): 1244. doi:10.3390/antiox9121244
|
[24] |
Cao X, Xue LD, Di Y, et al. MSC-derived exosomal lncRNA SNHG7 suppresses endothelial-mesenchymal transition and tube formation in diabetic retinopathy via miR-34a-5p/XBP1 axis[J]. Life Sci, 2021, 272: 119232. doi:10.1016/j.lfs.2021.119232
|
[25] |
Wang E, Feng B, Chakrabarti S. MicroRNA 9 is a regulator of endothelial to mesenchymal transition in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2023, 64(7): 13. doi:10.1167/iovs.64.7.13
|