山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (5): 192-197.doi: 10.6040/j.issn.1673-3770.0.2022.319

• 综述 • 上一篇    

宏基因组二代测序技术在坏死性颈筋膜炎中应用进展

秦念,肖禹,张锟艺,李京鲲,肖旭平   

  1. 湖南师范大学附属第一医院/湖南省人民医院 耳鼻咽喉头颈外科, 湖南 长沙 410005
  • 发布日期:2023-10-13
  • 通讯作者: 肖旭平. E-mail:469784129@qq.com

Application of metagenomic next-generation sequencing in cervical necrotizing fasciitis

QIN Nian, XIAO Yu, ZHANG Kunyi, LI Jingkun, XIAO Xuping   

  1. Department of Otorhinolaryngology & Head and Neck Surgery, the First Affiliated Hospital of Hunan Normal University /Hunan Provincial Peoples Hospital, Changsha 410005, Hunan, China
  • Published:2023-10-13

摘要: 宏基因组二代测序技术是一种新型病原微生物学检验方法,其不依赖于病原体分离培养,理论上可以快速检测出样本中的所有病原体信息,在多种感染性疾病中均有应用。坏死性颈筋膜炎是一种致命的感染性疾病,病死率高,是耳鼻咽喉头颈外科的急危重症之一。如何快速出检测其感染病原体种类,是提高抢救成功率及改善预后的关键。论文分析了宏基因组二代测序技术在坏死性颈筋膜炎的应用进展,旨在为早期坏死性颈筋膜炎诊断提供新的依据。

关键词: 坏死性颈筋膜炎, 颈部, 宏基因组二代测序技术, 诊断

Abstract: Metagenomic next generation sequencing is a novel microbiological diagnostic technique that does not rely on isolation and cultivation of pathogens. In theory, it can promptly detect all pathogen information in samples and has been used to diagnose many infectious diseases. Cervical necrotizing fasciitis is a fatal infectious disease with a high mortality rate. Cervical necrotizing fasciitis is one of the critical diseases in otorhinolaryngology head and neck surgery. Rapid detection of the infection causing pathogens is essential in improving the rescue success rate and prognosis. This article analyzes the application progress of the metagenomic next generation sequencing in necrotizing cervical fasciitis, to provide a new diagnostic basis for the early detection of the infection.

Key words: Necrotizing fasciitis, Cervical, Metagenomic next generation sequencing, Diagnosis

中图分类号: 

  • R762
[1] Abdurrazaq TO, Ibikunle AA, Braimah RO. Cervical necrotizing fasciitis: a potentially fatal disease with varied etiology[J]. Ann Med Health Sci Res, 2016, 6(4): 251-256. doi:10.4103/amhsr.amhsr_33_16
[2] Ord R, Coletti D. Cervico-facial necrotizing fasciitis[J]. Oral Dis, 2009, 15(2): 133-141. doi:10.1111/j.1601-0825.2008.01496.x
[3] Lecuit M, Eloit M. The diagnosis of infectious diseases by whole genome next generation sequencing: a new era is opening[J]. Front Cell Infect Microbiol, 2014, 4: 25. doi:10.3389/fcimb.2014.00025
[4] Carter PS, Banwell PE. Necrotising fasciitis: a new management algorithm based on clinical classification[J]. Int Wound J, 2004, 1(3): 189-198. doi:10.1111/j.1742-4801.2004.00054.x
[5] Ord R, Coletti D. Cervico-facial necrotizing fasciitis[J]. Oral Dis, 2009, 15(2): 133-141. doi:10.1111/j.1601-0825.2008.01496.x
[6] Gunaratne DA, Tseros EA, Hasan Z, et al. Cervical necrotizing fasciitis: systematic review and analysis of 1235 reported cases from the literature[J]. Head Neck, 2018, 40(9): 2094-2102. doi:10.1002/hed.25184
[7] Al-Ali MA, Hefny AF, Idris KM, et al. Cervical necrotizing fasciitis: an overlooked diagnosis of a fatal disease[J]. Acta Otolaryngol, 2018, 138(4): 411-414. doi:10.1080/00016489.2017.1393841
[8] Lanisnik B, Cizmarevic B. Necrotizing fasciitis of the head and neck: 34 cases of a single institution experience[J]. Eur Arch Otorhinolaryngol, 2010, 267(3): 415-421. doi:10.1007/s00405-009-1007-7
[9] Amponsah EK, Frimpong P, Eo MY, et al. Clinical classification of cervical necrotizing fasciitis[J]. Eur Arch Otorhinolaryngol, 2018, 275(12): 3067-3073. doi:10.1007/s00405-018-5155-5
[10] Hua J, Friedlander P. Cervical necrotizing fasciitis, diagnosis and treatment of a rare life-threatening infection[J]. Ear Nose Throat J, 2021: 145561321991341. doi:10.1177/0145561321991341
[11] Wong CH, Khin LW, Heng KS, et al. The LRINEC(Laboratory Risk Indicator for Necrotizing Fasciitis)score: a tool for distinguishing necrotizing fasciitis from other soft tissue infections[J]. Crit Care Med, 2004, 32(7): 1535-1541. doi:10.1097/01.ccm.0000129486.35458.7d
[12] Kim DH, Kim SW, Hwang SH. Application of the laboratory risk indicator for necrotizing fasciitis score to the head and neck: a systematic review and meta-analysis[J]. ANZ J Surg, 2022, 92(7/8): 1631-1637. doi:10.1111/ans.17459
[13] Sideris G, Sapountzi M, Malamas V, et al. Early detecting cervical necrotizing fasciitis from deep neck infections: a study of 550 patients[J]. Eur Arch Otorhinolaryngol, 2021, 278(11): 4587-4592. doi:10.1007/s00405-021-06653-4
[14] Kuczkowski J, Nowicki T, Brzoznowski W. Can modern diagnostics help in successful treatment of cervical necrotizing fasciitis?[J]. Eur Arch Otorhinolaryngol, 2017, 274(7): 2969-2970. doi:10.1007/s00405-017-4478-y
[15] Nagy E, Boyanova L, Justesen US, et al. How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories[J]. Clin Microbiol Infect, 2018, 24(11): 1139-1148. doi:10.1016/j.cmi.2018.02.008
[16] Juchler C, Spyropoulou V, Wagner N, et al. The contemporary bacteriologic epidemiology of osteoarticular infections in children in Switzerland[J]. J Pediatr, 2018, 194: 190-196.e1. doi:10.1016/j.jpeds.2017.11.025
[17] Gunaratne DA, Tseros EA, Hasan Z, et al. Cervical necrotizing fasciitis: systematic review and analysis of 1235 reported cases from the literature[J]. Head Neck, 2018, 40(9): 2094-2102. doi:10.1002/hed.25184
[18] Simner PJ, Miller S, Carroll KC. Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases[J]. Clin Infect Dis, 2018, 66(5): 778-788. doi:10.1093/cid/cix881
[19] Zhao-Fleming HH, Wilkinson JE, Larumbe E, et al. Obligate anaerobes are abundant in human necrotizing soft tissue infection samples-a metagenomics analysis[J]. APMIS, 2019, 127(8): 577-587. doi:10.1111/apm.12969
[20] 赵雅铭, 石崧. 以急性会厌炎为首诊的3例颈部坏死性筋膜炎病例报告并文献复习[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 12-16. doi:10.6040/j.issn.1673-3770.0.2020.403 ZHAO Yaming, SHI Song. Three cases of diagnosis and treatment of cervical necrotizing fasciitis with a primary diagnosis of acute epiglottitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 12-16. doi:10.6040/j.issn.1673-3770.0.2020.403
[21] Zhou EH, Liu SR, Zhu HM, et al. Management and postoperative use of double-cannula irrigation-drainage tube in cervical necrotizing fasciitis: a Chinese single-institution experience of 46 patients[J]. Eur Arch Otorhinolaryngol, 2021, 278(8): 2975-2981. doi:10.1007/s00405-020-06424-7
[22] Carapetis JR, Jacoby P, Carville K, et al. Effectiveness of clindamycin and intravenous immunoglobulin, and risk of disease in contacts, in invasive group a streptococcal infections[J]. Clin Infect Dis, 2014, 59(3): 358-365. doi:10.1093/cid/ciu304
[23] Jagadeesan B, Gerner-Smidt P, Allard MW, et al. The use of next generation sequencing for improving food safety: translation into practice[J]. Food Microbiol, 2019, 79: 96-115. doi:10.1016/j.fm.2018.11.005
[24] Soccol CR, Colonia BSO, de Melo Pereira GV, et al. Bioprospecting lipid-producing microorganisms: from metagenomic-assisted isolation techniques to industrial application and innovations[J]. Bioresour Technol, 2022, 346: 126455. doi:10.1016/j.biortech.2021.126455
[25] Faure D, Joly D. Next-generation sequencing as a powerful motor for advances in the biological and environmental sciences[J]. Genetica, 2015, 143(2): 129-132. doi:10.1007/s10709-015-9831-8
[26] Grumaz S, Stevens P, Grumaz C, et al. Next-generation sequencing diagnostics of bacteremia in septic patients[J]. Genome Med, 2016, 8(1): 73. doi:10.1186/s13073-016-0326-8
[27] Gu W, Deng XD, Lee M, et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids[J]. Nat Med, 2021, 27(1): 115-124. doi:10.1038/s41591-020-1105-z
[28] López-Pérez M, Mirete S. Discovery of novel antibiotic resistance genes through metagenomics[J]. Recent Adv DNA Gene Seq, 2014, 8(1): 15-19. doi:10.2174/2352092208666141013231244
[29] Duan HX, Li X, Mei AH, et al. The diagnostic value of metagenomic next generation sequencing in infectious diseases[J]. BMC Infect Dis, 2021, 21(1): 62. doi:10.1186/s12879-020-05746-5
[30] Gu W, Miller S, Chiu CY. Clinical metagenomic next-generation sequencing for pathogen detection[J]. Annu Rev Pathol, 2019, 14: 319-338. doi:10.1146/annurev-pathmechdis-012418-012751
[31] Duan J, Zhang CC, Che XS, et al. Detection of aerobe-anaerobe mixed infection by metagenomic next-generation sequencing in an adult suffering from descending necrotizing mediastinitis[J]. BMC Infect Dis, 2021, 21(1): 905. doi:10.1186/s12879-021-06624-4
[32] 陈怡恒, 郑宏雨, 李紫璇, 等. 宏基因组测序技术在颌面部间隙感染细菌分布中的研究[J]. 华西口腔医学杂志, 2021, 39(4): 475-481. doi:10.7518/hxkq.2021.04.016 CHEN Yiheng, ZHENG Hongyu, LI Zixuan, et al. Distribution of bacteria infected by metagenomic sequencing technology in maxillofacial space[J]. West China Journal of Stomatology, 2021, 39(4): 475-481. doi:10.7518/hxkq.2021.04.016
[33] Geng SK, Mei Q, Zhu CY, et al. Metagenomic next-generation sequencing technology for detection of pathogens in blood of critically ill patients[J]. Int J Infect Dis, 2021, 103: 81-87. doi:10.1016/j.ijid.2020.11.166
[34] Salter SJ, Cox MJ, Turek EM, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses[J]. BMC Biol, 2014, 12: 87. doi:10.1186/s12915-014-0087-z
[35] Wilson MR, O'Donovan BD, Gelfand JM, et al. Chronic meningitis investigated via metagenomic next-generation sequencing[J]. JAMA Neurol, 2018, 75(8): 947-955. doi:10.1001/jamaneurol.2018.0463
[36] Schlaberg R, Chiu CY, Miller S, et al. Validation of metagenomic next-generation sequencing tests for universal pathogen detection[J]. Arch Pathol Lab Med, 2017, 141(6): 776-786. doi:10.5858/arpa.2016-0539-RA
[37] Han DS, Li ZY, Li R, et al. mNGS in clinical microbiology laboratories: on the road to maturity[J]. Crit Rev Microbiol, 2019, 45(5/6): 668-685. doi:10.1080/1040841X.2019.1681933
[38] Graf EH, Simmon KE, Tardif KD, et al. Unbiased detection of respiratory viruses by use of RNA sequencing-based metagenomics: a systematic comparison to a commercial PCR panel[J]. J Clin Microbiol, 2016, 54(4): 1000-1007. doi:10.1128/JCM.03060-15
[39] Goldstein S, Beka L, Graf J, et al. Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing[J]. BMC Genomics, 2019, 20(1): 23. doi:10.1186/s12864-018-5381-7
[1] 周一静,邹建银,易红良,吴红敏. TGFBI在头颈部鳞状细胞癌中的表达及其临床意义[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 85-95.
[2] 张锟艺,肖旭平. 妊娠期鼻炎患者临床治疗及用药方案的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 175-183.
[3] 李大建,王艳,宋西成. 细菌产气与颈部坏死性筋膜炎相关性研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 134-138.
[4] 杨英玲,苟浩铖,冯俊. 细胞焦亡的分子机制及其在头颈部鳞状细胞癌中的研究现状[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 160-165.
[5] 彭薪燃,李永团. Madelung病伴阴囊脂肪堆积1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 67-71.
[6] 索安奇,杨欣欣. 线粒体自噬与头颈部鳞状细胞癌关系的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 111-117.
[7] 杜曰山一,王鲜,张国明. 人工智能辅助早产儿视网膜病变诊疗新进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 157-162.
[8] 韩飞燕,王英. 鼻腔鼻窦神经鞘瘤13例临床分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 21-25.
[9] 艾自琴,李军政. 免疫疫苗在头颈部鳞状细胞癌中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 143-150.
[10] 石安妮,张佳佳,白鹏,张重阳. 浅析“颈部七线法”针刺治疗突发性耳聋的内涵[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 103-107.
[11] 程雷,许秋艳,陈浩. 变态反应检测与诊断的临床应用及意义[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 1-6.
[12] 熊攀辉,沈暘,杨玉成. 基于表型和内在型的慢性鼻窦炎诊治进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 15-19.
[13] 芦晓妍, 温树信. 先天性后鼻孔闭锁的治疗进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 138-142.
[14] 万怡宁,张德军,傅则名,郭芳,郭颖媛,管国芳. 磁共振弥散加权成像在先天性中耳胆脂瘤精准诊断与JOS分期中的应用探讨12例[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 65-69.
[15] 刘寨,应民政. 环状RNA在变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 105-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!