山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (5): 105-112.doi: 10.6040/j.issn.1673-3770.0.2020.393

• • 上一篇    下一篇

环状RNA在变应性鼻炎中的研究进展

刘寨1,2,应民政2   

  1. 1.南华大学研究生院, 湖南 衡阳 421000;
    2.岳阳市二人民医院 耳鼻咽喉科, 湖南 岳阳 414000
  • 发布日期:2021-09-29
  • 通讯作者: 应民政. E-mail:minzhongying@126.com

Research progress on circRNAs in allergic rhinitis

LIU Zhai1,2,YING Minzheng2   

  1. 1. Graduate School, University of Soccth China, Hengyang 421000, Hunan, China;
    2. Department of Otorhinolaryngology, Yueyang Second People's Hospital, Yueyang 414000, Hunan, China
  • Published:2021-09-29

摘要: 环状RNA(circRNAs)是一类新发现的广泛存在于真核生物中没有5'帽状结构和3'腺苷酸尾的非编码RNA,并可能通过多种影响方式参与生物基因表达调控。例如,近来发现有些 circRNAs 含有微小RNA(miRNAs)相应序列的结合位点,可充当分子海绵,结合 miRNA 并阻断其对mRNA表达的抑制作用。最新研究表明,某些circRNAs 在变应性鼻炎(AR)鼻黏膜中表达丰富,且参与多种AR相关细胞因子的调控,但目前尚未见circRNAs与人类AR严重程度的相关性研究。简述circRNAs的形成机制、特征及生物学功能,阐述circRNAs 的转录后调控与分子海绵作用,综述circRNAs在AR的诊断和治疗方面上的潜力,并为未来AR的研究提供理论支持。

关键词: 环状RNA, 变应性鼻炎, 转录后调控, 分子海绵, 诊断与治疗

Abstract: CircRNAs are newly discovered non-coding RNAs found widely in eukaryotes. They lack the 5' cap structure and 3' adenosine tail. It has been confirmed that circRNAs can regulate gene expression in several ways. For example, we found that some circRNAs contain binding sites of the corresponding sequence in microRNAs. These circRNAs act as molecular sponges to bind miRNAs and intercept their suppressive function on mRNAs. The latest research has showed that some circRNAs expressed at high levels can be found in the nasal mucosa in AR, and that they are involved in the regulation of some cytokines related to AR. However, current research has failed to find a correlation between circRNAs and the degree of severity of AR in humans. In summary, this study evaluated the formation mechanisms, characteristics, and biological functions of circRNAs. The study has also described the post-transcriptional control and “molecular sponges” affect in AR, and it has summarized their potential in the diagnosis and treatment of AR. The study findings provide theoretical support for the analysis of AR in the future.

Key words: circRNAs, AR, Posttranscription regulation, Molecular sponge, Diagnosis and treatment

中图分类号: 

  • R765
[1] Wang XD, Zheng M, Lou HF, et al. An increased prevalence of self-reported allergic rhinitis in major Chinese cities from 2005 to 2011[J]. Allergy, 2016, 71(8): 1170-1180.doi: 10.1111/all.12874.
[2] Rouve S, Didier A, Demoly P, et al. Numeric score and visual analog scale in assessing seasonal allergic rhinitis severity[J]. Rhinology, 2010, 48(3):285-91. doi: 10.4193/Rhin09.208.
[3] Zhu X, Wang X, Wang Y, et al. The regulatory network among CircHIPK3, LncGAS5, and miR-495 promotes Th2 differentiation in allergic rhinitis[J]. Cell Death Dis. 2020, 11(4):216. doi: 10.1038/s41419-020-2394-3.
[4] Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis[J]. Cell Res, 2015, 25(8):981-984. doi:10.1038/cr.2015.82.
[5] Bahn JH, Zhang Q, Li F,et al. The landscape of microRNA, Piwi-interacting RNA,ang circular RNA in human saliva[J]. Clin Chem, 2015, 61(1): 221-230. doi:10.1373/clinchem.2014.230433.
[6] Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J]. Nat Commun, 2016, 7: 11215. doi:10.1038/ncomms11215.
[7] Petkovic S, Muller S. RNA circularization stratagies in vivo and in vitro[J]. Nucleic Acids Res, 2015, 43(4): 2454-2465. doi:10.1093/nar/gkv045.
[8] WANG D, LI Z, WU Y. The Research Progression and Clinical Significance of Circular RNAs in Head and Neck Cancers[J]. BioMed Research International, 2020. doi: 10.1155/2020/2712310.
[9] Yin Y, Long J, He Q, et al. Emerging roles of circRNA in formation and progression of cancer[J]. J Cancer. 2019, 10(21): 5015-5021. doi: 10.7150/jca.30828.
[10] 胡思洁, 魏萍, 寇巍, 等.变应性鼻炎患病率及危险因素Meta分析[J].临床耳鼻咽喉头颈外科杂志, 2017, 31(19):1485-1491. doi: 10.13201/j.issn.1001-1781.2017.19.006. HU Sijie, WEI Ping, KOU Wei, et al. Prevalence and risk factors of allergic rhinitis: a Meta-analysis[J]. J Clin Otorhinolaryngol Head Neck Surg, 2017, 31(19): 1485-1491. doi:10.13201/j.issn.1001-1781.2017.19.006.
[11] Eifan AO, Durham SR. Pathogenesis of rhinitis[J]. Clin Exp Allergy, 2016, 46(9): 1139-1151. doi:10.1111/cea.12780.
[12] 顾瑜蓉, 李华斌. 变应性鼻炎的发病机制与精准治疗[J]. 中国耳鼻咽喉颅底外科杂志, 2019, 25(6): 578-584. doi: 10.11798/j.issn.1007-1520.201906002. GU Yurong, LI Huabin. Allergic rhinitis: pathogenesis and precision medicine[J]. Chin J Otorhinolaryngol-Skull Base Surg, 2019, 25(6): 578-584. doi:10.11798/j.issn.1007-1520.201906002.
[13] Xie Fengmei, Hu Quanfu, Cai Qinfang, et al. IL-35 Inhibited Th17 Response in Children with Allergic Rhinitis[J]. ORL; Journal for Oto-rhino-laryngology and Its Related Specialties, 2020, 82(1): 47-52. doi:10.1159/000504197
[14] Castelli Sveva, arasi Stefania, Tripodi Salvatore, et al. IgE antibody repertoire in nasal secretions of children and adults with seasonal allergic rhinitis: a molecular analysis[J]. Pediatric allergy and immunology, 2020, 31(3): 273-280. doi:10.1111/pai.13148.
[15] V Sorbello, G Ciprandi, A Di Stefano, et al. Nasal IL-17F is related to bronchial IL-17F/neutrophilia and exacerbations in stable atopic severe asthma[J]. Allergy, 2015, 70(2): 236-240. doi: 10.1111/all.12547.
[16] Han Myung Woul, Kim Song Hee, Oh Inbo, et al. Serum IL-1β can be a biomarker in children with severe persistent allergic rhinitis[J]. Allergy Asthma Clin Immunol. 2019, 15: 58. doi: 10.1186/s13223-019-0368-8.
[17] Deng Tian, Yang Lan, Zheng Zhichao, et al. Calcitonin generelated peptide induces IL-6 expression in RAW264.7 macrophages mdiated by mmu_circRNA_007893.[J]. Mol Med Rep, 2017, 16(6): 9367-9374. doi: 10.3892/mmr.2017.7779.
[18] Zhenli Huang, Yong Cao, Min Zhou, et al. Hsa_circ_0005519 increases IL-13/IL-6 by regulating hsa-let-7a-5p in CD4+ T cells to affect asthma[J]. Clin Exp Allergy, 2019, 49(8): 1116-1127. doi: 10.1111/cea.13445.
[19] Wang Z, Ji N, Chen Z, et al. MiR-1165-3p Suppresses Th2 Differentiation via Targeting IL-13 and PPM1A in a Mouse Model of Allergic Airway Inflammation[J]. Allergy Asthma Immunol Res, 2020, 12(5): 859-876. doi: 10.4168/aair.2020.12.5.859.
[20] 程雷,钱俊俊,田慧琴.变应性鼻炎研究的若干进展[J].山东大学耳鼻喉眼学报,2017,31(3):1-3. Doi: 10.6040 /j.issn.1673-3770.1.2017.021. CHENG Lei, QIAN Junjun, TIAN Huiqin. Research progresses on allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(3): 1-3. doi:10.6040/j.issn.1673-3770.1.2017.021.
[21] 张辉,郑成彩,冯慧伟,等.变应性鼻炎患者外周血EOS-CSF、IL-5水平及EOS数目对局部皮质类固醇激素治疗效果的评价[J].山东大学耳鼻喉眼学报,2015,29(5):43-46. doi: 10.6040 /j.issn.1673-3770.0.2015.290. ZHANG Hui, ZHENG Chengcai, FENG Huiwei, et al. Valuation of the therapeutic effect of the nasal steroid hormone spray to detect EOS-CSF, IL-5 levels, EOS number of peripheral blood in allergic rhinitis patients[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2015(5): 43-46. doi:10.6040/j.issn.1673-3770.0.2015.290.
[22] Zhu YQ, Liao B, Liu YH, et al. MicroRNA-155 plays critical effects on Th2 factors expression and allergic inflammatory response in type-2 innate lymphoid cells in allergic rhinitis[J]. Eur Rev Med Pharmacol Sci, 2019,23(10):4097-4109. doi: 10.26355/eurrev_201905_17911.
[23] Ying Xiwang, Zhu Jianwei, Zhang Yuanhui. Circular RNA circ-TSPAN4 promotes lung adenocarcinoma metastasis by upregulating ZEB1 via sponging miR-665[J]. Mol Genet Genomic Med, 2019, 7(12): e991. doi: 10.1002/mgg3.991.
[24] Cui D, Qian R, Li Y. Circular RNA circ-CMPK1 contributes to cell proliferation of non-small cell lung cancer by elevating cyclin D1 via sponging miR-302e[J]. Mol Genet Genomic Med, 2020, 8(2): e999. doi: 10.1002/mgg3.999.
[25] Wang Yaqiu, Li Huiping, Lu Hong, et al. Circular RNA SMarCA5 inhibits the proliferation, migration, and invasion of non-small cell lung cancer by miR-19b-3p/HOXA9 axis[J]. OncoTargets and therapy, 2019, 12: 7055-7065. doi: 10.2147/OTT.S216320.
[26] Zhu Kai, Zhan Hao, Peng Yuanfei, et al. Plasma hsa_circ_0027089 is a diagnostic biomarker for hepatitis B virus-related hepatocellular carcinoma[J]. Carcinogenesis, 2019, 41(3): 296-302. doi:10.1093/carcin/bgz154.
[27] Hua Xu, Yin Sun, Bosen You, et al. Androgen receptor reverses the oncometabolite R-2-hydroxyglutarate-induced prostate cancer cell invasion via suppressing the circRNA-51217/miRNA-646/TGFβ1/p-Smad2/3 signaling[J]. Cancer Letters, 2020, 472: 151-164. doi:10.1016/j.canlet.2019.12.014.
[28] Mayoral RJ, Pipkin ME, Pachkov M, et al.MicroRNA-221- 222 regulate the cell cycle in mast cells[J]. J Immunol, 2009, 182(1): 433-445. doi: 10.4049/jimmunol.182.1.433.
[29] Bazan HA, Hatfield SA, Brug A, et al. Carotid Plaque Rupture Is Accompanied by an Increase in the Ratio of Serum circR-284 to miR-221 Levels[J]. Circ Cardiovasc Genet, 2017, 10(4): e001720. doi: 10.1161/CIRCGENETICS.117.001720.
[30] Berker M, Frank LJ, Geβner AL, et al. Allergies -A T cells perspective in the era beyond the T(H)1 /T(H)2 paradigm[J]. Clin Immunol, 2017, 174: 73-83. doi: 10.1016/j.clim.2016.11.001.
[31] Yang L, Zhang C, Bai X, et al. hsa_circ_0003738 Inhibits the Suppressive Function of Tregs by Targeting miR-562/IL-17A and miR-490-5p/IFN-γ Signaling Pathway[J]. Mol Ther Nucleic Acids, 2020, 21: 1111-1119. doi: 10.1016/j.omtn.2020.08.001.
[32] Zhou X, Li J, Zhou Y, et al. Down-regulated ciRS-7/up-regulated miR-7 axis aggravated cartilage degradation and autophagy defection by PI3K/AKT/mTOR activation mediated by IL-17A in osteoarthritis[J]. Aging(Albany NY), 2020. doi: 10.18632/aging.103731.
[33] 尹雪, 任秀敏, 刘春苗, 等.变应性鼻炎患者 IL-35 对于Treg /Th17 细胞平衡的调控作用[J].临床耳鼻咽喉头颈外科杂志, 2016, 30(3): 213-216.doi:10.13201/j.issn.1001-1781.2016.03.011. YIN Xue, REN Xiumin, LIU Chunmiao, et al. The regulatory effect of IL-35 on the balance of Treg/Th17 cells in allergic rhinitis patients[J]. J Clin Otorhinolaryngol Head Neck Surg, 2016, 30(3): 213-216. doi:10.13201/j.issn.1001-1781.2016.03.011.
[34] Chen Q, Mang G, Wu J, et al. Circular RNA circSnx5 Controls Immunogenicity of Dendritic Cells through the miR-544/SOCS1 Axis and PU.1 Activity Regulation[J]. Mol Ther, 2020. doi: 10.1016/j.ymthe.2020.07.001.
[35] Deng Tian, Yang Lan, Zheng Zhichao, et al. Calcitonin gene-related peptide induces IL-6 expression in RAW264.7 macrophages mediated by mmu_circRNA_007893[J]. Molecular medicine reports, 2017, 16(6): 9367-9374. doi: 10.3892/mmr.2017.7779.
[36] Liu Jiao, Cao Zhiwei. Protective Effect of Circular RNA(CircRNA)Ddx17 in Ovalbumin(OVA)-Induced Allergic Rhinitis(AR)Mice[J]. Med Sci Monit, 2020, 26: e919083. doi: 10.12659/MSM.919083.
[37] 谢益,韩锋产.miRNAs与内耳发育和听觉毛细胞凋亡与再生的研究进展[J].山东大学耳鼻喉眼学报,2019,33(2):126-129. doi: 10.6040/j.issn.1673-3770.0.2018.268. XIE Yi, HAN Fengchan. Role of miRNAs in inner ear development and apoptosis or regeneration of auditory hair cells[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 126-129. doi:10.6040/j.issn.1673-3770.0.2018.268.
[38] Li L, Zhang S, Jiang X, et al. MicroRNA-let-7e regulates the progression and development of allergic rhinitis by targeting suppressor of cytokine signaling 4 and activating Janus kinase 1/signal transducer and activator of transcription 3 pathway[J]. Exp Ther Med, 2018,15(4):3523-3529. doi: 10.3892/etm.2018.5827.
[39] Wu G, Yang G, Zhang R, et al. Altered microRNA Expression Profiles of Extracellular Vesicles in Nasal Mucus From Patients With Allergic Rhinitis[J]. Allergy Asthma Immunol Res, 2015, 7(5): 449-457. doi: 10.4168/aair.2015.7.5.449.
[40] Luo X, Hong H, Tang J, et al. Increased Expression of miR-146a in Children With Allergic Rhinitis After Allergen-Specific Immunotherapy[J]. Allergy Asthma Immunol Res, 2016, 8(2): 132-140. doi: 10.4168/aair.2016.8.2.132.
[41] Chen L, Zhang S, Wu J,et al. circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family[J]. Oncogene, 2017,36(32):4551-4561. doi: 10.1038/onc.2017.89.
[42] Tost Jörg. A translational perspective on epigenetics in allergic diseases[J]. The Journal of allergy and clinical immunology, 2018, 142(3):715-726. doi: 10.1016/j.jaci.2018.07.009.
[43] 张炜,曾昱菡,余先崧.慢性鼻窦炎手术前后ECP、EGF、IL-6的水平变化及临床意义[J].山东大学耳鼻喉眼学报,2018,32(3):63-67. doi: 10.6040 /j.issn.1673-3770.0.2017.547. ZHANG Wei, ZENG Yuhan, YU Xiansong. Changes in nasal secretion of ECP, EGF and IL-6 in patients with chronic sinusitis before and after endoscopic sinus surgery and their clinical significance[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(3): 63-67. doi:10.6040/j.issn.1673-3770.0.2017.547.
[44] Resende EP, Todo-Bom A, Loureiro C, et al. Asthma and rhinitis have different genetic profiles for IL13, IL17A and GSTP1 polymorphisms[J]. Rev Port Pneumol( 2006), 2017, 23(1): 10-16. doi: 10.1016/j.rppnen.2016.06.009.
[45] Zhu P, Zhu X, Wu J, et al. IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3[J]. Nat Immunol, 2019, 20(2): 183-194. doi: 10.1038/s41590-018-0297-6.
[46] Zhou Zhibin, Du Di, Chen Aimin, et al. Circular RNA expression profile of articular chondrocytes in an IL-1β-induced mouse model of osteoarthritis[J]. Gene, 2018. doi: 10.1016/j.gene.2017.12.020.
[47] Piao Chun Hua, Song Chang Ho, Lee Eun Jung, et al. Saikosaponin A ameliorates nasal inflammation by suppressing IL-6/ROR-γt/STAT3/IL-17/NF-κB pathway in OVA-induced allergic rhinitis[J]. Chemico-biological interactions, 2020, 315: 108874. doi: 10.1016/j.cbi.2019.108874.
[48] Monica Singh, Sarabjit Mastana, Surinderpal Singh, et al. Puneetpal Singh.Promoter polymorphisms in IL-6 gene influence pro-inflammatory cytokines for the risk of osteoarthritis [J]. Cytoki ne, 2020, 127: 154985. doi:10.1016/j.cyto.2020.154985.
[49] Majcher Sandra, Ustianowski Przemysaw, Tarnowski Maciej, et al. IL-1β and IL-10 gene polymorphisms in women with gestational diabetes[J]. J Matern Fetal Neonatal Med, 2019: 1-6. doi: 10.1080/14767058.2019.1678141.
[50] 李全生,魏庆宇. 变应性鼻炎临床实践指南:美国耳鼻咽喉头颈外科学会推荐[J]. 中国耳鼻咽喉头颈外科,2015,22(9):482-486. doi:10.16066/j.1672-7002.2015.09.016.
[51] Restimulia L, Pawarti DR, Ekorini HM. The Relationship between Serum Vitamin D Levels with Allergic Rhinitis Incidence and Total Nasal Symptom Score in Allergic Rhinitis Patients[J]. Open Access Maced J Med Sci, 2018, 6(8): 1405-1409. doi: 10.3889/oamjms.2018.247.
[52] Liu W, Zeng Q, Luo R. Correlation between Serum Osteopontin and miR-181a Levels in Allergic Rhinitis Children[J]. Mediators Inflamm, 2016: 9471215. doi: 10.1155/2016/9471215.
[53] 邓玉琴,杨雅琪,陶泽璋,等.微小RNA单核苷酸多态性与中国南方汉族人群变应性鼻炎易感性的研究[J].山东大学耳鼻喉眼学报,2016,30(1):1-4.doi:10.6040/j.issn.1673-3770.0.2015.487. DENG Yuqin, YANG Yaqi, TAO Zezhang, et al. Study on single-nucleotide polymorphisms of microRNA and susceptibility to allergic rhinitis in Han population of Southern China[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2016, 30(1): 1-4. doi:10.6040/j.issn.1673-3770.0.2015.487.
[54] Jia M, Chu C, Wang M. Correlation of microRNA profiles with disease risk and severity of allergic rhinitis[J]. Int J Clin Exp Pathol, 2018,11: 1791-1802. PMID: 31938286.
[55] Vidal AF, Sandoval GT, Magalhaes L, et al. Circular RNAs as a new field in gene regulation and their implications in translational research[J]. Epigenomics, 2016, 8: 551-562. doi: 10.2217/epi.16.3.
[56] Zhang Y, Zhang Y, Li X, et al. Microarray analysis of circular RNA expression patterns in polarized macrophages[J].Int J Mol Med, 2017, 39(2): 373-379.doi: 10.3892/ijmm.2017.2852.
[57] Bro(·overz)ek JL, Bousquet J, Agache I, et al. Allergic Rhinitis and its Impact on Asthma(ARIA)guidelines-2016 revision[A]. J Allergy Clin Immunol, 2017, 140(4): 950-958. doi: 10.1016/j.jaci.2017.03.050.
[58] Tang H, Jiang H, Zheng J, et al. MicroRNA-106b regulates pro-allergic properties of dendritic cells and Th2 polarization by targeting early growth response-2 in vitro[J]. Int Immunopharmacol, 2015, 28: 866-874. doi: 10.1016/j.intimp.2015.03.043.
[59] Teng Y, Zhang R, Liu C, et al. MiR-143 inhibits interleukin-13-induced inflammatory cytokine and mucus production in nasal epithelial cells from allergic rhinitis patients by targeting IL13Rα1[J]. Biochem Biophys Res Commun, 2015, 457: 58-64. doi: 10.1016/j.bbrc.2014.12.058.
[60] Zhao CY, Wang W, Yao HC, et al. SOCS3 in upregulated and targeted by MiR30a-5p in allergic rhinitis[J]. Int Arch Allergy Immunol, 2018, 175: 209-219. doi: 10.1159/000486857.
[61] Wang T, Chen D, Wang P, et al. MiR-375 prevents nasal mucosa cells from apoptosis and ameliorates allergic rhinitis via inhibiting JAK3/STAT3 pathway[J]. Biomed Pharmacother, 2018, 103: 621-627. doi: 10.1016/j.biopha.2018.04.050.
[62] Deng Y, Yang Y, Wang S, et al. Intranasal administration of lentiviral miR-135a regulates mast cell and antigen-induced inflammation by targeting GATA3[J]. PLoS One, 2015, 10: e0139322. doi: 10.1371/journal.pone.0139322.
[63] Xiao L, Jiang L, Hu Q, et al. MicroRNA-133b ameliorates allergic inflammation and symptom in murine model of allergic rhinitis by targeting NIrp3[J]. Cell Physiol Biochem, 2017, 42: 901-912. doi: 10.1159/000478645.
[64] Liu H, Zhang A, Zhao N, et al. Role of miR-146a in enforcing effect of specific immunotherapy on allergic rhinitis[J]. Immunol Invest, 2016, 45: 1-10. doi: 10.3109/08820139.2015.1085390.
[65] Hayat S, Darroudi M. Nanovaccine: a novel approach in immunization[J]. J Cell Physiol, 2019, 234:12530-12536. doi: 10.1002/jcp.28120.
[66] Luo X, Han M, Liu J, et al. Epithelial cell-derived microRNA-146a generates interleukin-10 producing monocytes to inhibit nasal allergy[J]. Sci Rep, 2015, 5: 15937. doi: 10.1038/srep15937.
[67] Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer[J]. Clin Chim Acta, 2015, 444: 132-136. doi: 10.1016/j.cca.2015.02.018.
[68] Jiang XM, Li ZL, Li JL, et al. A novel prognostic biomarker for cholangiocarcinoma: circRNA Cdr1as[J]. Eur Rev Med Pharmacol Sci, 2018, 22: 365-371. doi: 10.26355/eurrev_201801_14182.
[69] Zhang Y, Liang W, Zhang P, et al. Circular RNAs: emerging cancer biomarkers and targets[J]. J Exp Clin Cancer Res, 2017, 36: 152. doi: 10.1186/s13046-017-0624-z.
[70] Jiang XM, Li ZL, Li JL, et al. A novel prognostic biomarker for cholangiocarcinoma: circRNA Cdr1as[J]. Eur Rev Med Pharmacol Sci, 2018, 22: 365-371. doi: 10.26355/eurrev_201801_14182.
[71] Xu L, Zhang M, Zheng X, et al. The circular RNA ciRS-7(Cdr1as)acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2017, 143: 17-27. doi: 10.1007/s00432-016-2256-7.
[72] Zhu Q, Lu G, Luo Z, et al. CircRNA circ_0067934 promotes tumor growth and metastasis in hepatocellular carcinoma through regulation of miR-1324/FZD5/Wnt/beta-catenin axis[J]. Biochem Biophys Res Commun, 2018, 497: 626-632. doi: 10.1016/j.bbrc.2018.02.119.
[73] Krzysztof Specjalski,Ewa Jassem. MicroRNAs: Potential biomarkers and targets of therapy in allergic diseases?[J]. Arch Immunol Ther Exp(Warsz), 2019, 67(4): 213-223. doi: 10.1007/s00005-019-00547-4.
[74] Li L, Zhang S, Jiang X, et al. MicroRNA-let-7e regulates the progression and development of allergic rhinitis by targeting suppressor of cytokine signalling 4 and activating Janus kinase 1- signal transducer and activator of transcription 3 pathway[J]. Exp Ther Med, 2018, 15: 3523-3529. doi: 10.3892/etm.2018.5827.
[75] Zhu X, Wang X, Wang Y, et al. The regulatory network among CircHIPK3, LncGAS5, and miR-495 promotes Th2 differentiation in allergic rhinitis[J]. Cell Death Dis, 2020, 11(4): 216. doi:10.1038/s41419-020-2394-3.
[1] 倪璟滋,万文锦,程雷. 变应性鼻炎健康相关生活质量研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 110-115.
[2] 林一杭,李幼瑾. 肠道微生态在儿童变应性鼻炎中的研究现状[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 116-122.
[3] 刘真,宋西成. 细胞焦亡在变应性鼻炎中的作用机制及研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 123-129.
[4] 王娜,柴向斌. 前列腺源性ETS因子在哮喘及鼻黏膜炎性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 136-141.
[5] 刘一潼,周穗子,邱前辉. NLRP3炎症小体在慢性鼻窦炎和变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 142-146.
[6] 龚霄阳,程雷. 新冠疫情期间基于门诊患者的变应性鼻炎患者比例构成分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 245-255.
[7] 鹿伟理,姜涛,李宪华. 多重致敏儿童变应性鼻炎患者sIgE特征分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 260-265.
[8] 黄开月,李雪情,韩国鑫,张勤修. 基于“肺脾”理论指导穴位埋线治疗变应性鼻炎的Meta分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 266-274.
[9] 朱正茹, 张小兵. 中药汤剂结合常规西药治疗变应性鼻炎疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 281-289.
[10] 王菲,刘钰莹,肖麒祎,丁健,高尚,毛薇. 住院医师精神心理因素与变应性鼻炎的相关性研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 28-31.
[11] 林小燕,李静,马志祺,李依琳,高馨怡,李勇. 益生菌治疗变应性鼻炎的临床疗效及抗变态反应作用Meta分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 70-80.
[12] 杨晴,陆美萍,程雷. 苏皖地区变应性鼻炎患者气传变应原皮肤点刺试验和血清特异性IgE检测的一致性及相关性分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 40-46.
[13] 杨艳艳, 杨玉娟, 宋西成. 芳香烃受体抑制变应性鼻炎Th17免疫应答的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 109-113.
[14] 向浏岚,叶远航蒋璐云,刘洋. Tim-3在变应性鼻炎中的作用及机制研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 118-122.
[15] 朱正茹张小兵. 高迁移率族蛋白B1与变应性鼻炎的相关性[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 123-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林彬,王挥戈 . 功能性内镜鼻窦手术后鼻黏膜纤毛转归的研究[J]. 山东大学耳鼻喉眼学报, 2006, 20(6): 481 -487 .
[2] 公 蕾,孙 洁,薛子超,李敬华,薛卫国 . 鼻腔鼻窦恶性肿瘤细胞周期的DNA分析[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 193 -195 .
[3] 陈文文 . 1例T/NK淋巴瘤17年演进[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 472 -472 .
[4] 栾建刚,梁传余,文艳君,李炯 . 抑制表皮生长因子受体基因表达的pSIREN-ShuttleRNAi表达载体的构建[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 4 -8 .
[5] 马敬, 钟翠萍 . 手术治疗侵犯翼腭窝的鼻咽纤维血管瘤的方法(附5例报告)[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 30 -32 .
[6] 刘强和,罗香林,耿宛平,陈 晨,雷 迅,刘芳贤,邓 明 . 快速老化小鼠的听功能和耳蜗螺旋神经元的增龄性变化[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 215 -217 .
[7] 郑鹏凌,陈卫国,易笃友,黄清秀,卢 俊 . 耳内镜下吸引清除耳道耵聍55例并文献复习[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 223 -226 .
[8] 马 敬,钟翠萍,严 星,安 飞 . 耳屏软骨修补无残余软骨的鼻中隔穿孔15例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 246 -247 .
[9] 崔哲洙,严永峰,崔春莲,金顺吉 . 嗜酸性粒细胞在变应性鼻炎合并慢性鼻窦炎的分布特点[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 250 -252 .
[10] 赵鲁新,翟 洪,潘 洁 . 超声乳化吸除联合晶状体植入治疗急性闭角型青光眼伴白内障23例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 260 -262 .