山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (5): 107-114.doi: 10.6040/j.issn.1673-3770.0.2022.354

• 论著 • 上一篇    下一篇

伴发于后巩膜葡萄肿的高度近视性白内障眼底病变相关研究

买尔哈巴·玉素甫1,克里木江·阿不拉2,丁琳2,秦艳莉2,陈雪艺1   

  1. 1.新疆医科大学第一附属医院 眼科, 新疆 乌鲁木齐 841100;
    2.新疆维吾尔自治区人民医院 眼科, 新疆 乌鲁木齐 830002
  • 发布日期:2023-10-13
  • 通讯作者: 陈雪艺. E-mail:ykcangel@163.com
  • 基金资助:
    新疆维吾尔自治区科技支援项目基金项目(2020E02127);新疆维吾尔自治区自然科学基金面上项目(2022D01C134);新疆维吾尔自治区人民医院院内课题(20210228)

Fundus changes in high myopia cataract with posterior scleral staphyloma

YUSUFU·Maierhaba1, ABULA·Kelimujiang2, DING Lin2, QIN Yanli2, CHEN Xueyi1   

  1. 1. Department of Ophthalmology, The First Affiliated Hospital of xinjiang Medical University, Urumqi 841100, Xinjiang, China2. Department of Ophthalmology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830002, Xinjiang, China
  • Published:2023-10-13

摘要: 目的 探讨伴发于后巩膜葡萄肿的高度近视性白内障眼底病变特点。 方法 采用回顾性病例对照研究,选取2021年8月至12月白内障手术者68例(103眼),根据眼轴长度分为2组:高度近视组,眼轴≥26.5 mm;对照组,眼轴22.0~24.0 mm。高度近视组根据是否伴有后巩膜葡萄肿分为有葡萄肿者和无葡萄肿者2个亚组。采用Cirrus HD-OCT 5000测量黄斑中心凹、离中心凹1 000 μm、3 000 μm处视网膜厚度(retinal thickness, RT)、脉络膜厚度(choroidal thickness, CT),视神经纤维层厚度(retinal nerve fiber layer, RNFL),测量黄斑及视神经光学相干断层成像血管造影(optical coherence tomography angiography, OCTA)等。根据高度近视眼底病变ATN分级对所有眼底病变进行分级。 结果 对照组白内障术后视力恢复最佳,其次为高度近视无葡萄肿者,而高度近视有葡萄肿者最差。有葡萄肿者ATN分级明显高于无葡萄肿者,差异有统计学意义(P=0.007,0.015,0.001)。与对照组相比,高度近视组RT、CT 和RNFL更薄(P=0.004,0.004,0.001,0.001,0.018,0.001),黄斑无血管区(FAZ)面积更小(P=0.001,0.001),视神经OCTA 血流信号更低(P=0.025,0.001,0.001,0.001,0.026,0.001,0.001,0.001);但有、无葡萄肿者之间差异无统计学意义(P=0.871,0.964,0.888,0.911,0.765,0.999,0.999,0.806)。 结论 伴发于后巩膜葡萄肿的高度近视患者眼底病变更严重,影响白内障术后视力恢复,可能与RT、CT、RNFL、黄斑及视神经血流和FAZ发育等均有关。

关键词: 高度近视, 白内障, 后巩膜葡萄肿, 光学相干断层扫描

Abstract: Objective To investigate the fundus changes in high myopia cataract with posterior scleral staphyloma. Methods This was a retrospective case-control study, the data of 103 eyes of 68 patients with cataract between August and December 2021 were analyzed. All cases were divided into two groups based on axial length: the high myopia group, with an axial length ≥ 26.5 mm, and the control group, with an axial length of 22.0-24.0 mm. The high myopia group was divided into two subgroups: those with staphyloma and those without staphyloma. Cirrus HD-OCT 5000 was used to measure the retinal thickness(RT), choroidal thickness(CT), retinal nerve fiber layer(RNFL)and optical coherence tomography angiography(OCTA)at the fovea and at 1 000 μm and 3 000 μm from the fovea. Moreover, the optical coherence tomography(OCT)and optical coherence tomography angiography of the macular and optical nerve were measured. All patients were graded according to the ATN classification of high myopia fundus lesions. Results The control group had the best postoperative vision acuity, followed by the high myopia group without staphyloma, while the high myopia group with staphyloma had the worst. The ATN grade of patients with staphyloma was significantly higher than that of patients without staphyloma(P=0.007,0.015,0.001). The high myopia group had thinner RT, CT, and retinal nerve fiber layer(RNFL)compared with those in the control group(P=0.004,0.004,0.001,0.001,0.018,0.001). Moreover, the area of the foveal avascular zone(FAZ)in high myopia group was smaller(P=0.001,0.001)and the optical nerve OCTA blood flow signal was lower(P=0.025,0.001,0.001,0.001,0.026,0.001,0.001,0.001). However, there was no significant difference in OCTA between patients with and without staphyloma(P=0.871,0.964,0.888,0.911,0.765,0.999,0.999,0.806). Conclusion The fundus lesions of high myopia patients with posterior scleral staphyloma are more serious, and this may affect visual recovery after cataract surgery. This may also be related to the RT, CT, RNFL, macular and optic nerve blood flow, and FAZ dysplasia difference.

Key words: High myopia, Cataract, Posterior scleral staphyloma, Optical coherence tomography

中图分类号: 

  • R776.1
[1] Huang Q, Huang YZ, Luo Q, et al. Ocular biometric characteristics of cataract patients in Western China[J]. BMC Ophthalmol, 2018, 18(1): 99. doi:10.1186/s12886-018-0770-x
[2] Guo XX, Xiao O, Chen YX, et al. Three-dimensional eye shape, myopic maculopathy, and visual acuity: the Zhongshan ophthalmic center-brien holden vision institute high Myopia cohort study[J]. Ophthalmology, 2017, 124(5): 679-687. doi:10.1016/j.ophtha.2017.01.009
[3] Lin L, Xu MX, Mo E, et al. Accuracy of newer generation IOL power calculation formulas in eyes with high axial Myopia[J]. J Refract Surg, 2021, 37(11): 754-758. doi:10.3928/1081597X-20210712-08
[4] Ruiz-Medrano J, Montero JA, Flores-Moreno I, et al. Myopic maculopathy: current status and proposal for a new classification and grading system(ATN)[J]. Prog Retin Eye Res, 2019, 69: 80-115. doi:10.1016/j.preteyeres.2018.10.005
[5] Chen CL, Zhang A, Bojikian KD, et al. Peripapillary retinal nerve fiber layer vascular microcirculation in Glaucoma using optical coherence tomography-based microangiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT475-OCT485. doi:10.1167/iovs.15-18909
[6] Moon JY, Garg I, Cui Y, et al. Wide-field swept-source optical coherence tomography angiography in the assessment of retinal microvasculature and choroidal thickness in patients with myopia[J]. Br J Ophthalmol, 2023, 107(1): 102-108. doi:10.1136/bjophthalmol-2021-319540
[7] Li M, Yang Y, Jiang H, et al. Retinal microvascular network and microcirculation assessments in high Myopia[J]. Am J Ophthalmol, 2017, 174: 56-67. doi:10.1016/j.ajo.2016.10.018
[8] 许欢, 孔祥梅. 原发性开角型青光眼黄斑区视网膜微循环和结构损伤的研究[J]. 中华眼科杂志, 2017, 53(2): 98-103. doi:10.3760/cma.j.issn.0412-4081.2017.02.006 XU Huan, KONG Xiangmei. Study of retinal microvascular perfusion alteration and structural damage at macular region in primary open-angle glaucoma patients[J]. Journal of Command and Control, 2017, 53(2): 98-103. doi:10.3760/cma.j.issn.0412-4081.2017.02.006
[9] Wu JH, Moghimi S, Nishida T, et al. Association of macular OCT and OCTA parameters with visual acuity in glaucoma[J]. Br J Ophthalmol, 2022: bjophthalmol-2022-321460. doi:10.1136/bjo-2022-321460
[10] AttaAllah HR, Mohamed AAM, Ali MA. Macular vessels density in diabetic retinopathy: quantitative assessment using optical coherence tomography angiography[J]. Int Ophthalmol, 2019, 39(8): 1845-1859. doi:10.1007/s10792-018-1013-0
[11] Attia Ali Ahmed M, Shawkat Abdelhaleem A. Evaluation of microvascular and visual acuity changes in patients with early diabetic retinopathy: optical coherence tomography angiography study[J]. Clin Ophthalmol, 2022, 16: 429-440. doi:10.2147/OPTH.S353426
[12] Jin PY, Zou HD, Zhu JF, et al. Choroidal and retinal thickness in children with different refractive status measured by swept-source optical coherence tomography[J]. Am J Ophthalmol, 2016, 168: 164-176. doi:10.1016/j.ajo.2016.05.008
[13] Park UC, Lee EK, Kim BH, et al. Decreased choroidal and scleral thicknesses in highly myopic eyes with posterior staphyloma[J]. Sci Rep, 2021, 11(1): 7987. doi:10.1038/s41598-021-87065-6
[14] Guo XJ, Chen D, Luo SK, et al. EDI-OCT choroidal thickness in Posner-Schlossman syndrome[J]. Int Ophthalmol, 2020, 40(4): 877-889. doi:10.1007/s10792-019-01251-0
[15] Xiong K, Wang W, Gong X, et al. Influence of high myopia on choriocapillaris perfusion and choroidal thickness in diabetic patients without diabetic retinopathy[J]. Retina, 2022, 42(6): 1077-1084. doi:10.1097/IAE.0000000000003427
[16] Laíns I, Talcott KE, Santos AR, et al. Choroidal thickness in diabetic retinopathy assessed with swept-source optical coherence tomography[J]. Retina, 2018, 38(1): 173-182. doi:10.1097/IAE.0000000000001516
[17] El Matri L, Falfoul Y, El Matri K, et al. Posterior staphylomas in non-highly myopic eyes with retinitis pigmentosa[J]. Int Ophthalmol, 2020, 40(9): 2159-2168. doi:10.1007/s10792-020-01396-3
[18] Xu X, Fang YX, Yokoi T, et al. Posterior staphylomas in eyes with retinitis pigmentosa without high myopia[J]. Retina, 2019, 39(7): 1299-1304. doi:10.1097/IAE.0000000000002180
[19] Li HR, Wang QX, Liu YC, et al. Investigation of macular structural and microcirculatory characteristics of posterior staphyloma in high myopic eyes by swept source optical coherence tomography angiography[J]. Front Physiol, 2022, 13: 856507. doi:10.3389/fphys.2022.856507
[20] 杨茹, 张玉光, 徐湘辉, 等. 超声乳化术对老年性白内障黄斑区视网膜结构影响的临床研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 97-102. doi:10.6040/j.issn.1673-3770.0.2022.020 YANG Ru, ZHANG Yuguang, XU Xianghui, et al. A clinical study on the effect of phacoemulsification on the retinal structure in the macular region of senile cataract[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 97-102. doi:10.6040/j.issn.1673-3770.0.2022.020
[1] 李婉玉,古学军. 抗中性粒细胞胞浆抗体相关性血管炎并发巩膜炎及白内障1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 149-152.
[2] 韩宜平,张晗. 后囊膜混浊发病机制及前囊膜抛光技术的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 181-186.
[3] 赵露,田慧文,孟博,王薇,王艳玲. 颈内动脉闭塞患者黄斑区视网膜脉络膜厚度变化分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 72-76.
[4] 尤冉,郭笑霄,王薇,陈曦,王艳玲. 高度近视患者黄斑区视网膜劈裂分型与脉络膜特征分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 83-87.
[5] 张懿,唐莉. Lowe综合征合并青光眼1例[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 93-97.
[6] 熊翩翩,王佳琳,孙姣,周卓华,王艳玲. 高度近视豹纹状眼底视网膜脉络膜血流改变及相关性分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 114-121.
[7] 赵泓霄,张晗. 光学放大效应对神经节细胞复合体测量的影响[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 105-109.
[8] 董曙光,郭凤飞,孟旭霞,颜世龙. 早期开展飞秒激光辅助白内障超声乳化手术前囊膜撕裂原因的回顾性分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 110-114.
[9] 李鹏伟,苏光明,刘江川,穆雅林. 光学相干断层扫描血管成像在2型黄斑毛细血管扩张症中的应用进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 140-144.
[10] 段练,孟凡兰,党光福. 干眼对屈光性白内障手术的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 1-6.
[11] 孙极综述李灿审校. 白内障术后人工晶状体轴向位置预测与稳定性相关影响因素[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 7-12.
[12] 黄子彦综述 段国平审校. 高阶像差对白内障人工晶状体植入术后视觉质量的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 13-18.
[13] 黄子彦综述段国平审校. 不同类型人工晶状体植入术后倾斜和偏心影响视觉质量的研究现状[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 26-31.
[14] 孙璐,张顺华,吴昱舟,陈露璐,曹迪,干霖洋. 关于Alpha角0.5~0.8 mm的患者植入区域折射型人工晶状体的短期临床观察[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 32-37.
[15] 李爱军,崔小梅. 白内障术前房颤人群综合路径管理现状横断面调查[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 38-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!