山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (1): 115-121.doi: 10.6040/j.issn.1673-3770.0.2022.507

• 综述 • 上一篇    下一篇

角膜胶原交联术在较薄型圆锥角膜治疗中的研究进展

周玉红,邓应平   

  1. 四川大学华西医院 眼科, 四川 成都 610041
  • 发布日期:2024-01-12
  • 通讯作者: 邓应平. E-mail:dyp558@163.com

Progress of corneal collagen cross-linking for the treatment of thin keratoconic corneas

ZHOU Yuhong, DENG Yingping   

  1. Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
  • Published:2024-01-12

摘要: 角膜胶原交联术通过增加角膜硬度及生物力学稳定性可有效阻止或延缓圆锥角膜病情的进展。为避免术中紫外线能量对角膜内皮细胞及眼内组织造成不可逆的损伤,标准角膜胶原交联方案要求最薄点角膜基质厚度≥400 μm,这将较薄型圆锥角膜排除在外。为打破角膜厚度这一限制因素,诸多学者对标准角膜胶原交联方案不断改进,论文回顾总结了针对较薄型圆锥角膜的改良角膜胶原交联方案。

关键词: 圆锥角膜, 角膜胶原交联, 较薄型圆锥角膜, 核黄素, 治疗

Abstract: Corneal collagen cross-linking can effectively prevent or delay the progression of keratoconus by increasing corneal stiffness and biomechanical stability. To avoid irreversible damage to corneal endothelial cells and intraocular tissues caused by ultraviolet radiation, the standard protocol requires that the thinnest cornea stroma must have a minimal thickness of 400 μm, which excludes the thin keratoconic corneas. In order to break this limitation, plentiful scholars have being ameliorated the standard protocol. So, this article reviews and summarizes the modified corneal collagen cross-linking protocols for thin keratoconic corneas.

Key words: Keratoconus, Corneal collagen cross-linking, Thin cornea, Riboflavin, Treatment

中图分类号: 

  • R772.23
[1] Rabinowitz YS. Keratoconus[J]. Surv Ophthalmol, 1998, 42(4): 297-319. doi:10.1016/S0039-6257(97)00119-7
[2] 中华医学会眼科学分会角膜病学组. 中国圆锥角膜诊断和治疗专家共识(2019年)[J]. 中华眼科杂志, 2019, 55(12): 891-895. doi:10.3760/cma.j.issn.0412-4081.2019.12.004
[3] Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus[J]. Am J Ophthalmol, 2003, 135(5): 620-627. doi:10.1016/s0002-9394(02)02220-1
[4] Raiskup F, Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. principles[J]. Ocul Surf, 2013, 11(2): 65-74. doi:10.1016/j.jtos.2013.01.002
[5] Spoerl E, Mrochen M, Sliney D, et al. Safety of UVA-riboflavin cross-linking of the cornea[J]. Cornea, 2007, 26(4): 385-389. doi:10.1097/ICO.0b013e3180334f78
[6] Maurice DM, Giardini AA. Swelling of the cornea in vivo after the destruction of its limiting layers[J]. Br J Ophthalmol, 1951, 35(12): 791-797. doi:10.1136/bjo.35.12.791
[7] Hafezi F, Mrochen M, Iseli HP, et al. Collagen crosslinking with ultraviolet-A and hypoosmolar riboflavin solution in thin corneas[J]. J Cataract Refract Surg, 2009, 35(4): 621-624. doi:10.1016/j.jcrs.2008.10.060
[8] 张春晓, 李志伟, 徐文文, 等. 核黄素/UVA诱导的角膜交联术治疗晚期圆锥角膜的安全性和有效性[J]. 山东大学耳鼻喉眼学报, 2015, 29(2): 86-88. doi:10.6040/j.issn.1673-3770.0.2014.338 ZHANG Chunxiao, LI Zhiwei, XU Wenwen, et al. Efficacy and safety evaluation of UVA/riboflavin crosslinking for late and thin cornea keratoconus[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2015, 29(2): 86-88. doi:10.6040/j.issn.1673-3770.0.2014.338
[9] Koç M, Uzel MM, Koban Y, et al. Accelerated corneal cross-linking with a hypoosmolar riboflavin solution in keratoconic thin corneas: short-term results[J]. Cornea, 2016, 35(3): 350-354. doi:10.1097/ICO.0000000000000701
[10] Ozgurhan EB, Akcay BI, Kurt T, et al. Accelerated corneal collagen cross-linking in thin keratoconic corneas[J]. J Refract Surg, 2015, 31(6): 386-390. doi:10.3928/1081597X-20150521-11
[11] Celik Buyuktepe T, Ucakhan OO. Long-term visual, refractive, tomographic and aberrometric outcomes of corneal collagen crosslinking(CXL)with or without hypoosmolar riboflavin solution in the treatment of progressive keratoconus patients with thin corneas[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2022, 260(4): 1225-1235. doi:10.1007/s00417-021-05314-w
[12] Soeters N, Tahzib NG. Standard and hypoosmolar corneal cross-linking in various pachymetry groups[J]. Optom Vis Sci, 2015, 92(3): 329-336. doi:10.1097/OPX.0000000000000486
[13] Rosenblat E, Hersh PS. Intraoperative corneal thickness change and clinical outcomes after corneal collagen crosslinking: standard crosslinking versus hypotonic riboflavin[J]. J Cataract Refract Surg, 2016, 42(4): 596-605. doi:10.1016/j.jcrs.2016.01.040
[14] Wollensak G, Spörl E. Biomechanical efficacy of corneal cross-linking using hypoosmolar riboflavin solution[J]. Eur J Ophthalmol, 2019, 29(5): 474-481. doi:10.1177/1120672118801130
[15] Wollensak G, Aurich H, Wirbelauer C, et al. Significance of the riboflavin film in corneal collagen crosslinking[J]. J Cataract Refract Surg, 2010, 36(1): 114-120. doi:10.1016/j.jcrs.2009.07.044
[16] Hafezi F. Limitation of collagen cross-linking with hypoosmolar riboflavin solution: failure in an extremely thin cornea[J]. Cornea, 2011, 30(8): 917-919. doi:10.1097/ICO.0b013e31820143d1
[17] Gu SF, Fan ZS, Wang LH, et al. A short-term study of corneal collagen cross-linking with hypo-osmolar riboflavin solution in keratoconic corneas[J]. Int J Ophthalmol, 2015, 8(1): 94-97. doi:10.3980/j.issn.2222-3959.2015.01.17
[18] Yurttaser Ocak S, Mangan MS. Endothelial cell loss after accelerated corneal crosslinking using pachymetry-guided hypo-osmolar riboflavin dosing in thin keratoconic corneas[J]. J Cataract Refract Surg, 2021, 47(12): 1530-1534. doi:10.1097/j.jcrs.0000000000000686
[19] Zhang XY, Zhao J, Li MY, et al. Conventional and transepithelial corneal cross-linking for patients with keratoconus[J]. PLoS One, 2018, 13(4): e0195105. doi:10.1371/journal.pone.0195105
[20] Filippello M, Stagni E, O'Brart D. Transepithelial corneal collagen crosslinking: bilateral study[J]. J Cataract Refract Surg, 2012, 38(2): 283-291. doi:10.1016/j.jcrs.2011.08.030
[21] Spadea L, Mencucci R. Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas[J]. Clin Ophthalmol, 2012, 6: 1785-1792. doi:10.2147/OPTH.S37335
[22] Akbar B, Intisar-Ul-Haq R, Ishaq M, et al. Transepithelial corneal crosslinking in treatment of progressive keratoconus: 12 months' clinical results[J]. Pak J Med Sci, 2017, 33(3): 570-575. doi: 10.12669/pjms.333.11907
[23] 林志荣, 吴护平, 罗顺荣, 等. 跨上皮快速角膜胶原交联术治疗较薄型圆锥角膜的早期疗效观察[J]. 中华眼科杂志, 2017, 53(9): 694-700. doi:10.3760/cma.j.issn.0412-4081.2017.09.011 LIN Zhirong, WU Huping, LUO Shunrong, et al. Accelerated transepithelial corneal collagen cross-linking for progressive keratoconus with a thin cornea: one-year results[J]. Chinese Journal of Ophthalmology, 2017, 53(9): 694-700. doi:10.3760/cma.j.issn.0412-4081.2017.09.011
[24] 孙吉君, 黄晓静, 史伟云, 等. 保留角膜上皮瓣的角膜胶原交联术治疗较薄型圆锥角膜的临床研究[J]. 中华眼科杂志, 2018, 54(6): 421-425. doi: 10.3760/cma.j.issn.0412-4081.2018.06.006 SUN Jijun, HUANG Xiaojing, SHI Weiyun, et al. The clinical study of corneal cross-linking with preserved corneal epithelial flap in thin keratoconic corneas[J]. Chinese Journal of Ophthalmology, 2018, 54(6): 421-425. doi: 10.3760/cma.j.issn.0412-4081.2018.06.006
[25] Nath S, Shen C, Koziarz A, et al. Transepithelial versus epithelium-off corneal collagen cross-linking for corneal ectasia: a systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(8): 1150-1160. doi:10.1016/j.ophtha.2020.12.023
[26] Ng SM, Ren M, Lindsley KB, et al. Transepithelial versus epithelium-off corneal crosslinking for progressive keratoconus[J]. Cochrane Database Syst Rev, 2021, 3(3): CD013512. doi: 10.1002/14651858.CD013512.pub2
[27] Wollensak G, Hammer CM, Spörl E, et al. Biomechanical efficacy of collagen crosslinking in porcine cornea using a femtosecond laser pocket[J]. Cornea, 2014, 33(3): 300-305. doi:10.1097/ICO.0000000000000059
[28] Bilgihan K, Uysal BS, Özmen MC, et al. Transepithelial diluted alcohol and iontophoresis-assisted corneal crosslinking for progressive keratoconus in adults: 4-year clinical results[J]. Cornea, 2022, 41(4): 462-469. doi:10.1097/ICO.0000000000002821
[29] Bikbova G, Bikbov M. Standard corneal collagen crosslinking versus transepithelial iontophoresis-assisted corneal crosslinking, 24 months follow-up: randomized control trial[J]. Acta Ophthalmol, 2016, 94(7): e600-e606. doi:10.1111/aos.13032
[30] Vinciguerra R, Legrottaglie EF, Tredici C, et al. Transepithelial iontophoresis-assisted cross linking for progressive keratoconus: up to 7 years of follow up[J]. J Clin Med, 2022, 11(3): 678. doi:10.3390/jcm11030678
[31] Kamiya K, Kanayama S, Takahashi M, et al. Visual and topographic improvement with epithelium-on, oxygen-supplemented, customized corneal cross-linking for progressive keratoconus[J]. J Clin Med, 2020, 9(10): 3222. doi:10.3390/jcm9103222
[32] Jacob S, Kumar DA, Agarwal A, et al. Contact lens-assisted collagen cross-linking(CACXL): a new technique for cross-linking thin corneas[J]. J Refract Surg, 2014, 30(6): 366-372. doi:10.3928/1081597X-20140523-01
[33] Nour MM, El-Agha MH, Sherif AM, et al. Efficacy and safety of contact lens-assisted corneal crosslinking in the treatment of keratoconus with thin corneas[J]. Eye Contact Lens, 2021, 47(9): 500-504. doi:10.1097/ICL.0000000000000799
[34] Malhotra C, Gupta B, Jain AK, et al. Comparison of contact lens-assisted and transepithelial corneal crosslinking with standard epithelium-off crosslinking for progressive keratoconus: 24-month clinical results[J]. J Cataract Refract Surg, 2022, 48(2): 199-207. doi:10.1097/j.jcrs.0000000000000732
[35] Matlov Kormas R, Abu Tailakh M, Chorny A, et al. Accelerated CXL versus accelerated contact lens-assisted CXL for progressive keratoconus in adults[J]. J Refract Surg, 2021, 37(9): 623-630. doi:10.3928/1081597X-20210609-02
[36] Zhang HY, Roozbahani M, Piccinini AL, et al. Depth-dependent reduction of biomechanical efficacy of contact lens-assisted corneal cross-linking analyzed by Brillouin microscopy[J]. J Refract Surg, 2019, 35(11): 721-728. doi:10.3928/1081597X-20191004-01
[37] Srivatsa S, Jacob S, Agarwal A. Contact lens assisted corneal cross linking in thin ectatic corneas-A review[J]. Indian J Ophthalmol, 2020, 68(12): 2773-2778. doi:10.4103/ijo.IJO_2138_20
[38] Sachdev MS, Gupta D, Sachdev G, et al. Tailored stromal expansion with a refractive lenticule for crosslinking the ultrathin cornea[J]. J Cataract Refract Surg, 2015, 41(5): 918-923. doi:10.1016/j.jcrs.2015.04.007
[39] Cagini C, Riccitelli F, Messina M, et al. Epi-off-lenticule-on corneal collagen cross-linking in thin keratoconic corneas[J]. Int Ophthalmol, 2020, 40(12): 3403-3412. doi:10.1007/s10792-020-01526-x
[40] Li MY, Zhao F, Li M, et al. Treatment of corneal ectasia by implantation of an allogenic corneal lenticule[J]. J Refract Surg, 2018, 34(5): 347-350. doi:10.3928/1081597X-20180323-01
[41] Ganesh S, Brar S, Bowry R. Management of small-incision lenticule extraction ectasia using tissue addition and pocket crosslinking[J]. J Cataract Refract Surg, 2021, 47(3): 407-412. doi:10.1097/j.jcrs.0000000000000335
[42] Kymionis GD, Diakonis VF, Coskunseven E, et al. Customized pachymetric guided epithelial debridement for corneal collagen cross linking[J]. BMC Ophthalmol, 2009, 9: 10. doi:10.1186/1471-2415-9-10
[43] Kaya V, Utine CA, Yilmaz OF. Efficacy of corneal collagen cross-linking using a custom epithelial debridement technique in thin corneas: a confocal microscopy study[J]. J Refract Surg, 2011, 27(6): 444-450. doi:10.3928/1081597X-20101201-01
[44] Mazzotta C, Ramovecchi V. Customized epithelial debridement for thin ectatic corneas undergoing corneal cross-linking: epithelial island cross-linking technique[J]. Clin Ophthalmol, 2014, 8: 1337-1343. doi:10.2147/OPTH.S66372
[45] Cagil N, Sarac O, Can GD, et al. Outcomes of corneal collagen crosslinking using a customized epithelial debridement technique in keratoconic eyes with thin corneas[J]. Int Ophthalmol, 2017, 37(1): 103-109. doi:10.1007/s10792-016-0234-3
[46] Omar HA, El-Agha MH, Hassaballah MA, et al. Safety and efficacy of epithelial island crosslinking in keratoconus with thinnest pachymetry less than 400 μ[J]. Middle East Afr J Ophthalmol, 2021, 28(1): 11-17. doi:10.4103/meajo.MEAJO_186_20
[47] Wollensak G, Spoerl E, Wilsch M, et al. Endothelial cell damage after riboflavin-ultraviolet-a treatment in the rabbit[J]. J Cataract Refract Surg, 2003, 29(9): 1786-1790. doi:10.1016/s0886-3350(03)00343-2
[48] Kling S, Hafezi F. An algorithm to predict the biomechanical stiffening effect in corneal cross-linking[J]. J Refract Surg, 2017, 33(2): 128-136. doi:10.3928/1081597X-20161206-01
[49] Hafezi F, Kling S, Gilardoni F, et al. Individualized corneal cross-linking with riboflavin and UV-a in ultrathin corneas: the Sub400 protocol[J]. Am J Ophthalmol, 2021, 224: 133-142. doi:10.1016/j.ajo.2020.12.011
[50] 黄天泽, 陈迪, 李莹. 机器学习在眼表疾病诊断及角膜手术中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 13-19. doi:10.6040/j.issn.1673-3770.0.2021.329 HUANG Tianze, CHEN Di, LI Ying. Advances of machine learning in the diagnosis of ocular surface diseases and guiding corneal surgical procedures[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 13-19. doi:10.6040/j.issn.1673-3770.0.2021.329
[51] Kymionis GD, Portaliou DM, Diakonis VF, et al. Corneal collagen cross-linking with riboflavin and ultraviolet-a irradiation in patients with thin corneas[J]. Am J Ophthalmol, 2012, 153(1): 24-28. doi:10.1016/j.ajo.2011.05.036
[52] Yang M, Xu WJ, Chen ZX, et al. Engineering Hibiscus-like riboflavin/ZIF-8 microsphere composites to enhance transepithelial corneal cross-linking[J]. Adv Mater, 2022, 34(21): e2109865. doi:10.1002/adma.202109865
[53] Gulzar A, Yıldız E, Kaleli HN, et al. Ruthenium-induced corneal collagen crosslinking under visible light[J]. Acta Biomater, 2022, 147: 198-208. doi:10.1016/j.actbio.2022.05.040
[54] Dapena I, Parker JS, Melles GRJ. Potential benefits of modified corneal tissue grafts for keratoconus: bowman layer ‘inlay’ and ‘onlay’ transplantation, and allogenic tissue ring segments[J]. Curr Opin Ophthalmol, 2020, 31(4): 276-283. doi:10.1097/ICU.0000000000000665
[55] El Zarif M, Alió JL, Alió Del Barrio JL, et al. Corneal stromal regeneration: a review of human clinical studies in keratoconus treatment[J]. Front Med(Lausanne), 2021, 8: 650724. doi:10.3389/fmed.2021.650724
[1] 周一静,邹建银,易红良,吴红敏. TGFBI在头颈部鳞状细胞癌中的表达及其临床意义[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 85-95.
[2] 赵慧,黄超,崔文轩,司明威,杨梦瑶,王红,周芳. 视网膜淋巴瘤治疗中视网膜动脉阻塞1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 123-127.
[3] 涂巧铃,李玉凤,彭军. 鼻咽癌中抗PD-L1/PD-1治疗及非编码RNA调控研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 135-141.
[4] 张淼,杨颖超,付指辉,苏开明. 自主神经功能紊乱与鼻科疾病关系研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 142-148.
[5] 金婧, 冷辉. SARS-CoV-2感染后嗅觉功能障碍治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 162-174.
[6] 张锟艺,肖旭平. 妊娠期鼻炎患者临床治疗及用药方案的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 175-183.
[7] 黄艳利,李军政. 铜诱导肿瘤细胞死亡机制及其在肿瘤治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 198-205.
[8] 陈倬诣,郑亿庆,杨海弟. 慢性主观性耳鸣分类、发生发展机制及治疗新进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 1-12.
[9] 罗伊雯,肖永涛,高敏倩,杨嘉仪,杨海弟. 慢性主观性耳鸣的声治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 13-23.
[10] 董洪松,王春丽,俞艳萍,陈涛,聂国辉. 声音疗法联合药物治疗慢性主观性耳鸣的临床随机对照研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 30-37.
[11] 许海艳,曹卫,范大川. 多元复合声治疗对突聋患者耳鸣的疗效分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 38-45.
[12] 李璐,赵杰,赵博军. 中心性浆液性脉络膜视网膜病变的发病机制与治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 118-124.
[13] 韩飞燕,王英. 鼻腔鼻窦神经鞘瘤13例临床分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 21-25.
[14] 艾自琴,李军政. 免疫疫苗在头颈部鳞状细胞癌中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 143-150.
[15] 李孟婷,何书喜,王华. 炎症因子在圆锥角膜中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 151-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!