山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (3): 74-81.doi: 10.6040/j.issn.1673-3770.0.2023.177

• 论著 • 上一篇    

红光治疗对近视儿童等效球镜度、眼轴长度及脉络膜厚度影响的Meta分析

李飏,刘鸫,曹文捷   

  1. 上海健康医学院附属嘉定区中心医院 眼科, 上海 201800
  • 发布日期:2024-06-04
  • 通讯作者: 刘鸫. E-mail:lingyifei0410@163.com

Meta-analysis of the effect of red-light therapy on spherical equivalent, axial length, and choroidal thickness in myopic children

LI Yang, LIU Dong, CAO Wenjie   

  1. Department of Ophthalmology, Jiangding Distric Central Hospital Affiliated Shanghai University of Medicine & Health Science, Shanghai 201800, China
  • Published:2024-06-04

摘要: 目的 探讨红光治疗对于近视儿童等效球镜度、眼轴长度及脉络膜厚度的影响。 方法 检索PubMed、Web of Science、Cochrane Library、Embase、中国知网、万方数据库、中国生物医学文献数据库、维普网、临床试验注册中心从建库至2022年10月28日期间发表的关于红光治疗近视的研究。使用Cochrane手册对纳入文献进行偏倚风险评价及质量评价, 并使用Revman 5.3软件进行Meta分析、STATA 12.0软件检测发表偏倚。 结果 共计纳入9篇文献(1 425只眼), 其中6项为随机对照试验, 3项为队列研究。Meta分析显示, 红光治疗对等效球镜度(spherical equivalent, SE)及眼轴(axial length, AL)增加的抑制效果好于单光镜治疗(SE:WMD=0.41, 95%CI为0.29~0.54, I2=65%, P<0.000 01;AL:WMD=-0.21, 95%CI-026~-0.15,I2=73%, P<0.000 01), 红光治疗对脉络膜厚度(choroidal thickness, CHT)的增加优于单光镜治疗(WMD=26.05, 95%CI:22.11~29.99, I2=45%, P<0.000 01)。 结论 红光治疗疗效优于单光镜治疗, 但长期使用不良反应仍有待进一步观察。

关键词: 红光治疗, 近视, 眼轴, 等效球镜度, 脉络膜厚度, Meta分析

Abstract: Objective To explore the effect of red-light therapy on equivalent sphere, axial length and choroidal thickness in myopic children. Methods We searched PubMed, Web of Science, Cochrane Library, Embase, CNKI, Wanfang, CBM, Vip, and Clinical trial registry on red-light therapy for myopia control published from the establishment of the database to October 28, 2022. The Cochrane Handbook was used for risk of bias and quality evaluation of the included literature, and Revman 5.3 software was used for Meta-analysis, and STATA 12.0 software was used to detect publication bias. Results A total of 1425 eyes from nine articles were included, of which five were randomized controlled trials and three were control studies. Meta-analysis showed that the inhibitory effect of red-light on the increase in spherical equivalent(SE)and axial length(AL)was better than that of the single-focus spectacles group(SE: WMD=0.41, 95%CI: 0.29-0.54, I2=65%, P<0.000 01; AL: WMD=-0.21, 95%CI: -026 - 0.15, I2=73%, P<0.000 01), the increase of choroidal thickness(CHT)in red-light therapy group was superior to that in single-focus spectacles group(WMD=26.05, 95%CI: 22.11-29.99, I2=45%, P<0.000 01). Conclusion The control effect of red-light therapy was better than that of the single-focus spectacles, but long-term use of adverse reations still need to be further observed.

Key words: Red-light therapy, Myopia, Axis length, Spherical equivalent, Choroidal thickness, Meta-analysis

中图分类号: 

  • R778.1
[1] 熊翩翩, 王佳琳, 孙姣, 等. 高度近视豹纹状眼底视网膜脉络膜血流改变及相关性分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 114-121. doi:10.6040/j.issn.1673-3770.0.2022.421 XIONG Pianpian, WANG Jialin, SUN Jiao, et al. Analysis of retinal choroidal blood flow changes and correlation with tessellated fundus in highly myopic eyes[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 114-121. doi:10.6040/j.issn.1673-3770.0.2022.421
[2] Morgan IG, French AN, Ashby RS, et al. The epidemics of myopia: Aetiology and prevention[J]. Prog Retin Eye Res, 2018, 62: 134-149. doi:10.1016/j.preteyeres.2017.09.004
[3] Cooper J, Tkatchenko AV. A review of current concepts of the etiology and treatment of myopia[J]. Eye Contact Lens, 2018, 44(4): 231-247. doi:10.1097/ICL.0000000000000499
[4] Huang PC, Hsiao YC, Tsai CY, et al. Protective behaviours of near work and time outdoors in myopia prevalence and progression in myopic children: a 2-year prospective population study[J]. Br J Ophthalmol, 2020, 104(7): 956-961. doi:10.1136/bjophthalmol-2019-314101
[5] Yang XW, Yang YF, Wang Y, et al. Protective effects of sunlight exposure against PRK-induced myopia in infant rhesus monkeys[J]. Ophthalmic Physiol Opt, 2021, 41(4): 911-921. doi:10.1111/opo.12826
[6] Rucker F. Monochromatic and white light and the regulation of eye growth[J]. Exp Eye Res, 2019, 184: 172-182. doi:10.1016/j.exer.2019.04.020
[7] Zhu QR, Liu LQ. Relationship between myopia and light exposure[J]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2021, 52(6): 901-906. doi:10.12182/20211160205
[8] Hung LF, Arumugam B, She ZH, et al. Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys[J]. Exp Eye Res, 2018, 176: 147-160. doi:10.1016/j.exer.2018.07.004
[9] Wu PC, Chen CT, Lin KK, et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial[J]. Ophthalmology, 2018, 125(8): 1239-1250. doi:10.1016/j.ophtha.2017.12.011
[10] Xiong F, Mao T, Liao HF, et al. Orthokeratology and low-intensity laser therapy for slowing the progression of myopia in children[J]. Biomed Res Int, 2021, 2021: 8915867. doi:10.1155/2021/8915867
[11] 闫艺, 薛文娟, 赵延军, 等. 650 nm半导体激光控制青少年近视进展的研究[J]. 临床眼科杂志, 2021, 29(2): 132-137 YAN Yi, XUE Wenjuan, ZHAO Yanjun, et al. Effect of 650 nm semiconductor laser on juvenile myopia control[J]. Journal of Clinical Ophthalmology, 2021, 29(2): 132-137
[12] Dong J, Zhu ZT, Xu HF, et al. Myopia control effect of repeated low-level red-light therapy in Chinese children: a randomized, double-blind, controlled clinical trial[J]. Ophthalmology, 2023, 130(2): 198-204. doi:10.1016/j.ophtha.2022.08.024
[13] Tian L, Cao K, Ma DL, et al. Investigation of the efficacy and safety of 650 nm low-level red light for myopia control in children: a randomized controlled trial[J]. Ophthalmol Ther, 2022, 11(6): 2259-2270. doi:10.1007/s40123-022-00585-w
[14] Zhou L, Xing C, Qiang W, et al. Low-intensity, long-wavelength red light slows the progression of myopia in children: an Eastern China-based cohort[J]. Ophthalmic Physiol Opt, 2022, 42(2): 335-344. doi:10.1111/opo.12939
[15] Jiang Y, Zhu ZT, Tan XP, et al. Effect of repeated low-level red-light therapy for myopia control in children: a multicenter randomized controlled trial[J]. Ophthalmology, 2022, 129(5): 509-519. doi:10.1016/j.ophtha.2021.11.023
[16] Xiong F, Mao T, Liao HF, et al. Orthokeratology and low-intensity laser therapy for slowing the progression of myopia in children[J]. Biomed Res Int, 2021, 2021: 8915867. doi:10.1155/2021/8915867
[17] 刘丹. 红光治疗控制儿童近视进展的临床研究[D]. 大理: 大理大学, 2022. doi:10.27811/d.cnki.gdixy.2022.000271
[18] 赖伟霞, 贾亦悦, 张雨艺, 等. 低强度红光在低龄高度近视儿童中的疗效研究[J]. 眼科新进展, 2022, 42(9): 727-730. doi:10.13389/j.cnki.rao.2022.0149 LAI Weixia, JIA Yiyue, ZHANG Yuyi, et al. Efficacy of low-level red light in young children with high myopia[J]. Recent Advances in Ophthalmology, 2022, 42(9): 727-730. doi:10.13389/j.cnki.rao.2022.0149
[19] 陈培正, 张宏亮, 王晶晶, 等. 艾尔兴哺光仪控制青少年、儿童近视疗效分析[J]. 实用中西医结合临床, 2018, 18(10): 63-64. doi:10.13638/j.issn.1671-4040.2018.10.030 CHEN Peizheng, ZHANG Hongliang, WANG Jingjing, et al. Analysis of therapeutic effect of Aierxing light feeding instrument on myopia control of teenagers and children[J]. Practical Clinical Journal of Integrated Traditional Chinese and Western Medicine, 2018, 18(10): 63-64. doi:10.13638/j.issn.1671-4040.2018.10.030
[20] Zadnik K, Mutti DO. Outdoor activity protects against childhood myopia-let the Sun shine In[J]. JAMA Pediatr, 2019, 173(5): 415-416. doi:10.1001/jamapediatrics.2019.0278
[21] Chen HY, Wang W, Liao Y, et al. Low-intensity red-light therapy in slowing myopic progression and the rebound effect after its cessation in Chinese children: a randomized controlled trial[J]. Albrecht Von Graefes Arch Fur Klin Und Exp Ophthalmol, 2023, 261(2): 575-584. doi:10.1007/s00417-022-05794-4
[22] Dai LL, Yang WC, Qin XY, et al. Serum metabolomics profiling and potential biomarkers of myopia using LC-QTOF/MS[J]. Exp Eye Res, 2019, 186: 107737. doi:10.1016/j.exer.2019.107737
[23] Jówko E, P aszewski M, Cie liński M, et al. The effect of low level laser irradiation on oxidative stress, muscle damage and function following neuromuscular electrical stimulation. A double blind, randomised, crossover trial[J]. BMC Sports Sci Med Rehabil, 2019, 11: 38. doi:10.1186/s13102-019-0147-3
[24] Yuan JS, Wu SJ, Wang YW, et al. Inflammatory cytokines in highly myopic eyes[J]. Sci Rep, 2019, 9(1): 3517. doi:10.1038/s41598-019-39652-x
[25] 尤冉, 郭笑霄, 王薇, 等. 高度近视患者黄斑区视网膜劈裂分型与脉络膜特征分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 83-87. doi:10.6040/j.issn.1673-3770.0.2022.528 YOU Ran, GUO Xiaoxiao, WANG Wei, et al. Association of macular retinoschisis severity with choroidal parameters in patients with high myopia[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 83-87. doi:10.6040/j.issn.1673-3770.0.2022.528
[1] 王凯健,陈雪生,王威. 血小板-淋巴细胞比值与喉鳞状细胞癌预后相关性的Meta分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 67-73.
[2] 吴丽丽,曲毅. OCTA在病理性近视脉络膜新生血管应用及其在人工智能的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 144-149.
[3] 张真,杨卓莹,周佳妮,张大为,陈仁杰. 环索奈德鼻喷剂治疗季节性过敏性鼻炎疗效与安全的Meta分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 13-20.
[4] 买尔哈巴·玉素甫,克里木江·阿不拉,丁琳,秦艳莉,陈雪艺. 伴发于后巩膜葡萄肿的高度近视性白内障眼底病变相关研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 107-114.
[5] 毕晓云,马本绪,王心茹,李旭豪,杨继国. 穴位贴敷治疗小儿过敏性鼻炎随机对照试验的Meta分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 75-85.
[6] 李泽鹏,李文建,孙志佳. 中成药治疗急性咽炎数据挖掘及网状Meta分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 111-118.
[7] 翟睿,李园,于敬龙,陈溪,郑酉友,刘兆兰,王俊宏. 揿针治疗变应性鼻炎临床疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 35-45.
[8] 张西,邓启成,张震,程瑶,王靖淞,赵锐,刘海. 营养支持对喉癌术后咽瘘影响的Meta分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 51-59.
[9] 赵露,田慧文,孟博,王薇,王艳玲. 颈内动脉闭塞患者黄斑区视网膜脉络膜厚度变化分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 72-76.
[10] 尤冉,郭笑霄,王薇,陈曦,王艳玲. 高度近视患者黄斑区视网膜劈裂分型与脉络膜特征分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 83-87.
[11] 孟博,王康,罗丽华,王艳玲,李爽. 基于WOS数据库的高度近视黄斑裂孔性视网膜脱离研究特征及趋势分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 84-90.
[12] 熊翩翩,王佳琳,孙姣,周卓华,王艳玲. 高度近视豹纹状眼底视网膜脉络膜血流改变及相关性分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 114-121.
[13] 赵泓霄,张晗. 光学放大效应对神经节细胞复合体测量的影响[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 105-109.
[14] 代诚李宾中. 多焦点软性角膜接触镜应用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 100-105.
[15] 林曼青,周敏,陈腾宇,李丹,方彩珊,王睿智,朱锦祥,阮岩,徐慧贤,王培源. 中药鼻腔冲洗治疗慢性鼻窦炎术后有效性和安全性的Meta分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 209-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!