山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (3): 168-176.doi: 10.6040/j.issn.1673-3770.0.2023.518

• 综述 • 上一篇    

玻璃体切除术后视野缺损的机制研究及预防

李致富,高玉   

  1. 海军军医大学第一附属医院 眼科, 上海 200433
  • 发布日期:2025-06-04
  • 通讯作者: 高玉. E-mail:gyhqyygy@sina.com

Mechanistic study and prevention of visual field defects after vitrectomy

LI Zhifu, GAO Yu   

  1. Department of Ophthalmology, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
  • Published:2025-06-04

摘要: 目前,标准三通道睫状体扁平部玻璃体切除术(pars plana vitrectomy, PPV)为治疗眼后段疾病的最常用手术方式。近年来随着医疗技术发展,PPV已经进入无缝线微创时代,其适应证不断扩大、并发症越来越少。但PPV后出现视野缺损(visual field defects, VFD)屡见报道,给患者生活带来严重影响,然其产生机制依然不明,对其产生原因缺乏系统性分类与总结。本文主要从PPV后发生VFD的主要原因机制及预防措施等方面进行总结,以期为临床治疗中减少此类并发症提供帮助。

关键词: 玻璃体切除术, 视野缺损, 机制, 预防

Abstract: Currently, standard three-port ciliary flattening pars plana vitrectomy(PPV)is the most commonly used surgical procedure for the treatment of posterior segment diseases. In recent years, with the development of medical technology, PPV has entered the era of minimally invasive sutureless surgery, and its indications have expanded with fewer complications. However, visual field defects(VFD)after PPV have been frequently reported and have a serious impact on patients' lives, but the mechanism of VFD is still unknown, and there is a lack of systematic classification and summarization of the causes of VFD. In this article, we summarize the major causes of VFD after PPV and preventive measures to help reduce such complications in clinical treatment.

Key words: Vitrectomy, Visual field defects, Mechanism, Prevention

中图分类号: 

  • R774.5
[1] Fujii GY, De Juan E Jr, Humayun MS, et al. A new 25-gauge instrument system for transconjunctival sutureless vitrectomy surgery[J]. Ophthalmology, 2002, 109(10): 1807-1812. doi:10.1016/s0161-6420(02)01179-x
[2] Belin PJ, Parke DW 3rd. Complications of vitreoretinal surgery[J]. Curr Opin Ophthalmol, 2020, 31(3): 167-173. doi:10.1097/ICU.0000000000000652
[3] Melberg NS, Thomas MA. Visual field loss after pars Plana vitrectomy with air/fluid exchange[J]. Am J Ophthalmol, 1995, 120(3): 386-388. doi:10.1016/s0002-9394(14)72169-5
[4] Sohn EH, Strohbehn A, Stryjewski T, et al. Posteriorly inserted vitreous base: preoperative characteristics, intraoperative findings, and outcomes after vitrectomy[J]. Retina, 2020, 40(5): 943-950. doi:10.1097/IAE.0000000000002482
[5] Ohji M, Nao-I N, Saito Y, et al. Prevention of visual field defect after macular hole surgery by passing air used for fluid-air exchange through water[J]. Am J Ophthalmol, 1999, 127(1): 62-66. doi:10.1016/s0002-9394(98)00287-6
[6] Gass CA, Haritoglou C, Messmer EM, et al. Peripheral visual field defects after macular hole surgery: a complication with decreasing incidence[J]. Br J Ophthalmol, 2001, 85(5): 549-551. doi:10.1136/bjo.85.5.549
[7] Yonemura N, Hirata A, Hasumura T, et al. Long-term alteration in the air-infused rabbit retina[J]. Graefe's Arch Clin Exp Ophthalmol, 2003, 241(4): 314-320. doi:10.1007/s00417-003-0629-5
[8] Hirata A, Yonemura N, Hasumura T, et al. Effect of infusion air pressure on visual field defects after macular hole surgery[J]. Am J Ophthalmol, 2000, 130(5): 611-616. doi:10.1016/s0002-9394(00)00597-3
[9] Yang SS, McDonald HR, Everett AI, et al. Retinal damage caused by air-fluid exchange during pars plana vitrectomy. Retina. 2006, 26(3): 334-338. doi: 10.1097/00006982-200603000-00013
[10] Khurana RN, Patel VR. Paracentral and cecocentral scotomas after pars Plana vitrectomy for rhegmatogenous retinal detachment[J]. Am J Ophthalmol, 2020, 219: 163-169. doi:10.1016/j.ajo.2020.06.026
[11] Hirata A, Yonemura N, Hasumura T, et al. New infusion cannula for prevention of retinal damage by infusion air during vitrectomy[J]. Retina, 2003, 23(5): 682-685. doi:10.1097/00006982-200310000-00013
[12] Uemura A, Kanda S, Sakamoto Y, et al. Visual field defects after uneventful vitrectomy for epiretinal membrane with indocyanine green-assisted internal limiting membrane peeling[J]. Am J Ophthalmol, 2003, 136(2): 252-257. doi:10.1016/s0002-9394(03)00157-0
[13] Yamashita T, Uemura A, Kita H, et al. Analysis of the retinal nerve fiber layer after indocyanine green-assisted vitrectomy for idiopathic macular holes[J]. Ophthalmology, 2006, 113(2): 280-284. doi: 10.1016/j.ophtha.2005.10.046
[14] Yamashita T, Uemura A, Kita H, et al. Long-term outcomes of visual field defects after indocyanine green-assisted macular hole surgery[J]. Retina, 2008, 28(9): 1228-1233. doi: 10.1097/IAE.0b013e31817b6b2e
[15] von Jagow B, Höing A, Gandorfer A, et al. Functional outcome of indocyanine green-assisted macular surgery: 7-year follow-up[J]. Retina, 2009, 29(9): 1249-1256. doi: 10.1097/IAE.0b013e3181a91dd3
[16] Mito T, Kobayashi T, Shiraishi A. Central scotoma after indocyanine green assisted fovea-sparing internal limiting membrane peeling[J]. Am J Ophthalmol Case Rep, 2020, 20: 100942. doi:10.1016/j.ajoc.2020.100942
[17] Engel E, Schraml R, Maisch T, et al. Light-induced decomposition of indocyanine green[J]. Invest Ophthalmol Vis Sci, 2008, 49(5): 1777-1783. doi: 10.1167/iovs.07-0911
[18] Tsuiki E, Fujikawa A, Miyamura N, et al. Visual field defects after macular hole surgery with indocyanine green-assisted internal limiting membrane peeling[J]. Am J Ophthalmol, 2007, 143(4): 704-705. doi:10.1016/j.ajo.2006.10.051
[19] Haritoglou C, Gandorfer A, Gass CA, et al. Indocyanine green-assisted peeling of the internal limiting membrane in macular hole surgery affects visual outcome: a clinicopathologic correlation[J]. Am J Ophthalmol, 2002, 134(6): 836-841. doi:10.1016/s0002-9394(2)01816-0
[20] Seo KH, Yu SY, Kwak HW. Topographic changes in macular ganglion cell-inner plexiform layer thickness after vitrectomy with indocyanine green-guided internal limiting membrane peeling for idiopathic macular hole[J]. Retina, 2015, 35(9): 1828-1835. doi:10.1097/IAE.0000000000000563
[21] Hillenkamp J, Saikia P, Herrmann WA, et al. Surgical removal of idiopathic epiretinal membrane with or without the assistance of indocyanine green: a randomised controlled clinical trial[J]. Graefes Arch Clin Exp Ophthalmol, 2007, 245(7): 973-979. doi: 10.1007/s00417-006-0485-1
[22] Hillenkamp J, Saikia P, Gora F, et al. Macular function and morphology after peeling of idiopathic epiretinal membrane with and without the assistance of indocyanine green[J]. Br J Ophthalmol, 2005, 89(4): 437-443. doi:10.1136/bjo.2004.051250
[23] Yuen D, Gonder J, Proulx A, et al. Comparison of the in vitro safety of intraocular dyes using two retinal cell lines: a focus on brilliant blue G and indocyanine green[J]. Am J Ophthalmol, 2009, 147(2): 251-259. doi:10.1016/j.ajo.2008.08.031
[24] Savary P, Kodjikian L. Intraretinal brilliant blue G infiltration during internal limiting membrane peeling[J]. Graefe's Arch Clin Exp Ophthalmol, 2014, 252(6): 1017-1019. doi:10.1007/s00417-014-2631-5
[25] Fukuda K, Shiraga F, Yamaji H, et al. Morphologic and functional advantages of macular hole surgery with brilliant blue G-assisted internal limiting membrane peeling[J]. Retina, 2011, 31(8): 1720-1725. doi:10.1097/IAE.0b013e31822a33d0
[26] Henrich PB, Haritoglou C, Meyer P, et al. Anatomical and functional outcome in brilliant blue G assisted chromovitrectomy[J]. Acta Ophthalmol, 2010, 88(5): 588-593. doi: 10.1111/j.1755-3768.2008.01477.x
[27] Li SS, Li M, You R, et al. Efficacy of different doses of dye-assisted internal limiting membrane peeling in idiopathic macular hole: a systematic review and network meta-analysis[J]. Int Ophthalmol, 2021, 41(3): 1129-1140. doi:10.1007/s10792-020-01656-2
[28] 李铮, 王瑞峰, 高雪霞, 等. 无染色剂辅助内界膜剥除术治疗特发性黄斑孔的效果观察[J]. 中华眼外伤职业眼病杂志, 2021, 43(2): 151-155. doi:10.3760/cma.j.cn116022-20200901-00258 LI Zheng, WANG Ruifeng, GAO Xuexia, et al. The observation on the efficacy of internal limiting membrane peeling without assisted staining for the treatment of idiopathic macular hole[J]. Chinese Journal of ocular trauma and occupational eye disease, 2021, 43(2): 151-155. doi:10.3760/cma.j.cn116022-20200901-00258
[29] Ezra E, Arden GB, Riordan-Eva P, et al. Visual field loss following vitrectomy for stage 2 and 3 macular holes[J]. Br J Ophthalmol, 1996, 80(6): 519-525. doi:10.1136/bjo.80.6.519
[30] Boldt HC, Munden PM, Folk JC, et al. Visual field defects after macular hole surgery[J]. Am J Ophthalmol, 1996, 122(3): 371-381. doi:10.1016/s0002-9394(14)72064-1
[31] Hutton WL, Fuller DG, Snyder WB, et al. Visual field defects after macular hole surgery. A new finding[J]. Ophthalmology, 1996, 103(12): 2152-2158;discussion 2158-2159. doi:10.1016/s0161-6420(96)30376-x
[32] Cullinane AB, Cleary PE. Prevention of visual field defects after macular hole surgery[J]. Br J Ophthalmol, 2000, 84(4): 372-377. doi:10.1136/bjo.84.4.372
[33] Taban M, Lewis H, Lee MS. Nonarteritic anterior ischemic optic neuropathy and ‘visual field defects’ following vitrectomy: could they be related?[J]. Graefe's Arch Clin Exp Ophthalmol, 2007, 245(4): 600-605. doi:10.1007/s00417-006-0420-5
[34] Kawashima H, Nagai N, Shinoda H, et al. Optic neuropathy causing vertical unilateral hemianopsia after pars Plana vitrectomy for a macular hole: a case report[J]. Medicine, 2018, 97(17): e0321. doi:10.1097/MD.0000000000010321
[35] Uchida A, Shinoda K, Matsumoto CS, et al. Acute visual field defect following vitrectomy determined to originate from optic nerve by electrophysiological tests[J]. Case Rep Ophthalmol, 2012, 3(3): 396-405. doi:10.1159/000345507
[36] Haritoglou C, Gass CA, Schaumberger M, et al. Long-term follow-up after macular hole surgery with internal limiting membrane peeling[J]. Am J Ophthalmol, 2002,134(5):661-666. doi: 10.1016/s0002-9394(02)01751-8
[37] Deltour JB, Grimbert P, Masse H, et al. Detrimental effects of active internal limiting membrane peeling during epiretinal membrane surgery: microperimetric analysis[J]. Retina, 2017, 37(3): 544-552. doi:10.1097/IAE.0000000000001179
[38] Ducloyer JB, Ivan J, Poinas A, et al. Does internal limiting membrane peeling during epiretinal membrane surgery induce microscotomas on microperimetry? Study protocol for PEELING, a randomized controlled clinical trial[J]. Trials, 2020, 21(1): 500. doi:10.1186/s13063-020-04433-9
[39] Tao J, Yang J, Wu Y, et al. Internal limiting membrane peeling distorts the retinal layers and induces scotoma formation in the perifoveal temporal macula[J]. Retina,2022,42(12):2276-2283. doi: 10.1097/IAE.0000000000003619
[40] Jonna G, Thompson IA, Mendel TA, et al. Five-year functional outcomes after epiretinal membrane surgery: a prospective, controlled study[J]. Retina, 2019, 39(12): 2326-2331. doi:10.1097/IAE.0000000000002323
[41] Akino K, Nagai N, Watanabe K, et al. Risk of newly developing visual field defect and neurodegeneration after pars Plana vitrectomy for idiopathic epiretinal membrane[J]. Br J Ophthalmol, 2021, 105(12): 1683-1687. doi:10.1136/bjophthalmol-2020-317478
[42] van Overdam KA, van Etten PG, van Meurs JC, et al. Vitreous wiping, a new technique for removal of vitreous cortex remnants during vitrectomy[J]. Acta Ophthalmol, 2019, 97(5): e747-e752. doi:10.1111/aos.13991
[43] Newsom RSB, Johnston R, Sullivan PM, et al. Sudden visual loss after removal of silicone oil[J]. Retina, 2004, 24(6): 871-877. doi:10.1097/00006982-200412000-00005
[44] Herbert EN, Habib M, Steel D, et al. Central scotoma associated with intraocular silicone oil tamponade develops before oil removal[J]. Graefes Arch Clin Exp Ophthalmol, 2006, 244(2): 248-252. doi:10.1007/s00417-005-0076-6
[45] Asaria RHY, Kon CH, Bunce C, et al. Silicone oil concentrates fibrogenic growth factors in the retro-oil fluid[J]. Br J Ophthalmol, 2004, 88(11): 1439-1442. doi:10.1136/bjo.2003.040402
[46] Scheerlinck LM, Schellekens PA, Liem AT, et al. Incidence, risk factors, and clinical characteristics of unexplained visual loss after intraocular silicone oil for macula-on retinal detachment[J]. Retina, 2016, 36(2): 342-350. doi:10.1097/IAE.0000000000000711
[47] 张昕雨. 运用OCT及OCTA观察硅油对视网膜脉络膜的影响[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 132-136. doi:10.6040/j.issn.1673-3770.0.2020.539 ZHANG Xinyu. Retinochoriodal changes associated with silicone oil tamponade detected by optical coherence tomography and optical coherence tomography angiography[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 132-136. doi:10.6040/j.issn.1673-3770.0.2020.539
[48] Asrani S, Essaid L, Alder BD, et al. Artifacts in spectral-domain optical coherence tomography measurements in glaucoma[J]. JAMA Ophthalmol, 2014, 132(4): 396-402. doi:10.1001/jamaophthalmol.2013.7974
[49] Tsuchiya S, Higashide T, Udagawa S, et al. Glaucoma-related central visual field deterioration after vitrectomy for epiretinal membrane: topographic characteristics and risk factors[J]. Eye, 2021, 35: 919-928. doi:10.1038/s41433-020-0996-8
[50] Ko YC, Chen YC, Huang YM, et al. Factors related to unfavorable visual outcome after idiopathic epiretinal membrane surgery in patients with glaucoma[J]. Retina, 2022, 42(4): 712-720. doi:10.1097/IAE.0000000000003379
[51] Tsuchiya S, Higashide T, Sugiyama K. Visual field changes after vitrectomy with internal limiting membrane peeling for epiretinal membrane or macular hole in glaucomatous eyes[J]. PLoS One, 2017, 12(5): e0177526. doi:10.1371/journal.pone.0177526
[52] Charles S, Ho AC, Dugel PU, et al. Clinical comparison of 27-gauge and 23-gauge instruments on the outcomes of pars Plana vitrectomy surgery for the treatment of vitreoretinal diseases[J]. Curr Opin Ophthalmol, 2020, 31(3): 185-191. doi:10.1097/ICU.0000000000000659
[53] 于津津, 罗莎莎, 丁楠楠, 等. 无缝线27G+轴心玻璃体切除术治疗黄斑前膜[J]. 中华眼外伤职业眼病杂志, 2019, 41(3): 208-212. doi:10.3760/cma.j.issn.2095-1477.2019.03.013 YU Jinjin, LUO Shasha, DING Nannan, et al. The efficacy of sutureless 27G + axial vitrectomy for macular epiretinal membrane[J]. Chinese Journal of ocular trauma and occupational eye disease, 2019, 41(3): 208-212. doi:10.3760/cma.j.issn.2095-1477.2019.03.013
[54] 梁冬青, 刘玉燕, 董益, 等. 特发性黄斑裂孔手术前后微视野及光相干断层扫描血管成像变化特征[J]. 中华眼底病杂志, 2020, 36(7): 533-538. doi:10.3760/cma.j.cn511434-20190912-00288 LIANG Dongqing, LIU Yuyan, DONG Yi, et al. The changing characteristics of microperimeter and optical coherence tomography angiography before and after idiopathic macular hole surgery[J]. Chinese Journal of Ocular Fundus Diseases, 2020, 36(7): 533-538. doi:10.3760/cma.j.cn511434-20190912-00288
[55] 葛慧敏, 蒋沁, 徐向忠. 微视野联合OCTA分析特发性黄斑前膜术后视功能的研究[J]. 中华眼外伤职业眼病杂志, 2021, 43(11): 812-818. doi:10.3760/cma.j.cn116022-20210516-00147 GE Huimin, JIANG Qin, XU Xiangzhong. Study on the visual function with microperimeter and OCTA after idiopathic macular epiretinal membrane surgery[J]. Chinese Journal of ocular trauma and occupational eye disease, 2021, 43(11): 812-818. doi:10.3760/cma.j.cn116022-20210516-00147
[56] 雷敏, 陈婷, 艾明. 特发性黄斑前膜患者神经节细胞复合体厚度与黄斑部深浅血流密度比值的相关性研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 104-113. doi:10.6040/j.issn.1673-3770.0.2022.322 LEI Min, CHEN Ting, AI Ming. Investigating the correlation between the macular ganglion cell complex and the ratio of deep and superfi-cial vessel density in patients with idiopathic epiretinal membrane[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 104-113. doi:10.6040/j.issn.1673-3770.0.2022.322
[57] Liu Y, Wang Y, Dong Y, et al. Characteristics of fixation patterns and their relationship with visual function of patients with idiopathic macular holes after vitrectomy[J]. Sci Rep, 2021, 11(1): 7658. doi: 10.1038/s41598-021-87286-9
[58] Mieno H, Kojima K, Yoneda K, et al. Evaluation of pre- and post-surgery reading ability in patients with epiretinal membrane: a prospective observational study[J]. BMC Ophthalmol, 2020, 20(1): 95. doi: 10.1186/s12886-020-01364-6
[59] 王曾仪, 梁曦达, 郁艳萍, 等. 特发性黄斑裂孔患者视网膜敏感度与视觉相关生活质量的关系[J]. 中华实验眼科杂志, 2019, 37(1): 35-39. doi:10.3760/cma.j.issn.2095-0160.2019.01.008 WANG Zengyi, LIANG Xida, YU Yanping, et al. Relationship of mean retinal sensitivity with vision-related quality of life in patients with idiopathic macular hole[J]. Chinese Journal of Experimental Ophthalmology, 2019, 37(1): 35-39. doi:10.3760/cma.j.issn.2095-0160.2019.01.008
[1] 潘佳煜,张春林. 急性低频感音神经性听力下降病因及发病机制的研究进展[J]. 山东大学耳鼻喉眼学报, 2025, 39(2): 126-131.
[2] 肖哲,张胜娟,赵子琦,兴辰,李成泉,刘志强. Ultra Q:YAG激光治疗黄斑部视网膜前出血17例并文献复习[J]. 山东大学耳鼻喉眼学报, 2025, 39(1): 130-135.
[3] 吴玮,王磊,陈升,李连勇,王刚. 胃食管气道反流性疾病多学科研究及进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(6): 1-14.
[4] 刘莲莲,李进让. 阻塞性睡眠呼吸暂停与咽喉反流[J]. 山东大学耳鼻喉眼学报, 2024, 38(6): 15-22.
[5] 周诗侗,杨艳艳,杨玉成,方红雁. 胃蛋白酶与咽喉反流性疾病:从致病机制到咽喉鳞状细胞癌的潜在风险因素[J]. 山东大学耳鼻喉眼学报, 2024, 38(6): 55-60.
[6] 马莉,高瞻,李鹏起,倪前伟. 鼻眶筛并发颧骨骨折伴发症解剖研究现状[J]. 山东大学耳鼻喉眼学报, 2024, 38(5): 126-130.
[7] 朱慧涛,陈丽倩,陶艳丽. 扁桃体术后口干发生机制及防治研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(5): 131-135.
[8] 胡婷婷,王越华. 阻塞性睡眠呼吸暂停与乳腺癌相关性研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 41-45.
[9] 涂巧铃,李玉凤,彭军. 鼻咽癌中抗PD-L1/PD-1治疗及非编码RNA调控研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 135-141.
[10] 于竺君,宁云红,谭智敏. 饮食对变应性疾病的影响[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 206-214.
[11] 陈倬诣,郑亿庆,杨海弟. 慢性主观性耳鸣分类、发生发展机制及治疗新进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 1-12.
[12] 罗伊雯,肖永涛,高敏倩,杨嘉仪,杨海弟. 慢性主观性耳鸣的声治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 13-23.
[13] 张红,李欣. 中枢神经系统活动异常在耳鸣发生中的作用与机制[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 24-29.
[14] 索安奇,杨欣欣. 线粒体自噬与头颈部鳞状细胞癌关系的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 111-117.
[15] 李璐,赵杰,赵博军. 中心性浆液性脉络膜视网膜病变的发病机制与治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 118-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!