山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (3): 162-167.doi: 10.6040/j.issn.1673-3770.0.2023.442
• 综述 • 上一篇
毛一恒1,2,冯洁2,何润田2
MAO Yiheng1,2, FENG Jie2, HE Runtian2
摘要: 高胆固醇血症和高低密度脂蛋白血症患者在眼底疾病患者中占有较高的比重,其已成为眼底疾病发生发展过程中一个不可忽视的危险因素。本文旨在探究高胆固醇血症及高低密度脂蛋白血症对脉络膜厚度和视网膜光感细胞层的作用,分析二者通过促进炎症因子和血管内皮生长因子聚集等机制对光感细胞层的影响以及对于如黄斑变性、黄斑水肿、脉络膜脱离等眼底疾病脉络膜厚度变化的影响,总结脉络膜厚度变化规律,以期预警疾病的发生、发展提供参考。
中图分类号:
| [1] 毛莲, 黄伶智, 潘露, 等. 2009至2019年中国人群血脂研究热点分析[J]. 中国动脉硬化杂志, 2020, 28(7): 616-622. doi:10.3969/j.issn.1007-3949.2020.07.013 MAO Lian, HUANG Lingzhi, PAN Lu, et al. Hotspot analysis of blood lipid research in Chinese population from 2009 to 2019[J]. Chinese Journal of Arteriosclerosis, 2020, 28(7): 616-622. doi:10.3969/j.issn.1007-3949.2020.07.013 [2] Hou XH, Wang LM, Zhu DL, et al. Prevalence of diabetic retinopathy and vision-threatening diabetic retinopathy in adults with diabetes in China[J]. Nat Commun, 2023, 14: 4296. doi:10.1038/s41467-023-39864-w [3] 李胜, 李春实, 纪莉莉, 等. 糖尿病性视网膜病变硬性渗出与血脂异常关系的研究[J]. 当代医学, 2018, 24(35): 75-77. doi:10.3969/j.issn.1009-4393.2018.35.030 LI Sheng, LI Chunshi, JI Lili, et al. A study on relationship between hard exudation and dyslipidemia in diabetic retinopathy[J]. Contemporary Medicine, 2018, 24(35): 75-77. doi:10.3969/j.issn.1009-4393.2018.35.030 [4] Lin CY, Huang YL, Hsia WP, et al. Correlation of choroidal thickness with age in healthy subjects: automatic detection and segmentation using a deep learning model[J]. Int Ophthalmol. 2022, 42(10):3061-3070. doi: 10.1007/s10792-022-02292-8 [5] 郭梦翔, 闫利锋, 周瑾, 等. 原发性视网膜色素变性患者血清脂蛋白与血流参数相关性研究[J]. 临床眼科杂志, 2017, 25(2): 97-99. doi:10.3969/j.issn.1006-8422.2017.02.001 GUO Mengxiang, YAN Lifeng, ZHOU Jin, et al. Correlation between serum lipoprotein and blood flow parameters in patients with primary retinal pigmentosa[J]. Journal of Clinical Ophthalmology, 2017, 25(2): 97-99. doi:10.3969/j.issn.1006-8422.2017.02.001 [6] Endo H, Kase S, Ito Y, et al. Relationship between choroidal structure and duration of diabetes[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(6): 1133-1140. doi:10.1007/s00417-019-04295-1 [7] Cackett P, Yeo I, Cheung CMG, et al. Relationship of smoking and cardiovascular risk factors with polypoidal choroidal vasculopathy and age-related macular degeneration in Chinese persons[J]. Ophthalmology, 2011, 118(5): 846-852. doi:10.1016/j.ophtha.2010.09.026 [8] Wang W, Liu S, Qiu ZH, et al. Choroidal thickness in diabetes and diabetic retinopathy: a swept source OCT study[J]. Invest Ophthalmol Vis Sci, 2020, 61(4): 29. doi:10.1167/iovs.61.4.29 [9] Kaderli A, Acar MA, Ünlü N, et al. The correlation of hyperopia and choroidal thickness, vessel diameter and area[J]. Int Ophthalmol, 2018, 38(2): 645-653. doi:10.1007/s10792-017-0509-3 [10] Kocamaz M, Karada g O, Onder SE. Comparison of choroidal thicknesses in patients with coronary artery disease and patients at risk of coronary artery disease[J]. Int Ophthalmol, 2021, 41(6): 2117-2124. doi:10.1007/s10792-021-01769-2 [11] Salazar JJ, Ramírez AI, de Hoz R, et al. Alterations in the choroid in hypercholesterolemic rabbits: reversibility after normalization of cholesterol levels[J]. Exp Eye Res., 2007, 84(3):412-22. doi: 10.1016/j.exer.2006.10.012 [12] Lee SSY, Lingham G, Alonso-Caneiro D, et al. Choroidal thickness in young adults and its association with visual acuity[J]. Am J Ophthalmol, 2020, 214: 40-51. doi:10.1016/j.ajo.2020.02.012 [13] 钱欣, 王继红, 褚婷, 等. 脉络膜厚度和血管密度与糖尿病视网膜病变严重程度的相关性[J]. 临床眼科志, 2023, 31(3): 211-214. doi: 10.3969/j.issn.1006-8422.2023.03.005 QIAN Xin, WANG Jihong, CHU Ting, et al. The correlation between choroidal thickness ascular density and the severity of diabetic retinopathy[J]. Journal of Clinical Ophthalmology, 2023, 31(3): 211-214. doi: 10.3969/j.issn.1006-8422.2023.03.005 [14] Mahmud M, Ahem A, Bastion ML C, et al. The relationship between choroidal and photoreceptor layer thickness with visual acuity in highly myopic eyes[J]. Front Cell Neurosci, 2022, 16: 800065. doi:10.3389/fncel.2022.800065 [15] Yin L, Zhang DL, Ren Q, et al. Prevalence and risk factors of diabetic retinopathy in diabetic patients: a community based cross-sectional study[J]. Medicine, 2020, 99(9): e19236. doi:10.1097/MD.0000000000019236 [16] Zhang XY, Wang KY, Zhu L, et al. Reverse cholesterol transport pathway and cholesterol efflux in diabetic retinopathy[J]. J Diabetes Res, 2021: 8746114. doi:10.1155/2021/8746114 [17] Busik JV. Lipid metabolism dysregulation in diabetic retinopathy[J]. J Lipid Res, 2021, 62: 100017. doi:10.1194/jlr.TR120000981 [18] Zhou Y, Wang CY, Shi K, et al. Relationship between dyslipidemia and diabetic retinopathy: a systematic review and meta-analysis[J]. Medicine, 2018, 97(36): e12283. doi:10.1097/MD.0000000000012283 [19] Nazih H, Bard JM. Cholesterol, oxysterols and LXRs in breast cancer pathophysiology[J]. Int J Mol Sci, 2020, 21(4): 1356. doi:10.3390/ijms21041356 [20] Xu HJ, Zhou S, Tang QL, et al. Cholesterol metabolism: new functions and therapeutic approaches in cancer[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(1): 188394. doi:10.1016/j.bbcan.2020.188394 [21] Yu HS, Hong EH, Shin YU, et al. ATP-binding cassette subfamily A-1(ABCA1)levels are increased in the aqueous humour of proliferative diabetic retinopathy patients[J]. Acta Ophthalmol, 2021, 99(3): 442-443. doi:10.1111/aos.14550 [22] Liu K, Chen LJ, Lai TY, et al. Genes in the high-density lipoprotein metabolic pathway in age-related macular degeneration and polypoidal choroidal vasculopathy[J]. Ophthalmology, 2014, 121(4):911-916. doi: 10.1016/j.ophtha.2013.10.042 [23] Yuan MZ, Han RA, Zhang CX, et al. Association of genes in the high-density lipoprotein metabolic pathway with polypoidal choroidal vasculopathy in asian population: a systematic review and meta-analysis[J]. J Ophthalmol, 2018: 9538671. doi: 10.1155/2018/9538671 [24] Nakata I, Yamashiro K, Kawaguchi T, et al.. Association between the cholesteryl ester transfer protein gene and polypoidal choroidal vasculopathy[J]. Invest Ophthalmol Vis Sci, 2013, 54(9):6068-6073. doi: 10.1167/iovs.13-11605 [25] Zhang YP, Wang YX, Zhou JQ, et al. The influence of diabetes, hypertension, and hyperlipidemia on the onset of age-related macular degeneration in north China: the kailuan eye study[J]. Biomed Environ Sci, 2022, 35(7):613-621. doi: 10.3967/bes2022.081 [26] Meng QY, Huang LZ, Sun YY, et al. Effect of high-density lipoprotein metabolic pathway gene variations and risk factors on neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in China[J]. PLoS One, 2015, 10(12): e0143924. doi:10.1371/journal.pone.0143924 [27] 王娇娇, 李苗. 糖尿病视网膜病变的机制和细胞模型研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 93-99. doi:10.6040/j.issn.1673-3770.0.2021.203 WANG Jiaojiao, LI Miao. Progress in diabetic retinopathy mechanisms and cellular models[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 93-99. doi:10.6040/j.issn.1673-3770.0.2021.203 [28] Alı?瘙塂ık M, I?瘙塂ik MU. The relationship between choroidal thickness and intracellular oxidised-reduced glutathione and extracellular thiol-disulfide homeostasis at different stages of diabetic retinopathy[J]. Curr Eye Res, 2021, 46(3): 367-372. doi:10.1080/02713683.2020.1842463 [29] Gattoussi S, Cougnard-Grégoire A, Korobelnik JF, et al. Choroidal thickness, vascular factors, and age-related macular degeneration: the alienor study[J]. Retina, 2019, 39(1): 34-43. doi:10.1097/IAE.0000000000002237 [30] Capitão M, Soares R. Angiogenesis and inflammation crosstalk in diabetic retinopathy[J]. J Cell Biochem, 2016, 117(11): 2443-2453. doi:10.1002/jcb.25575 [31] Chung YR, Park SW, Choi SY, et al. Association of statin use and hypertriglyceridemia with diabetic macular edema in patients with type 2 diabetes and diabetic retinopathy[J]. Cardiovasc Diabetol, 2017, 16(1): 4. doi:10.1186/s12933-016-0486-2 [32] Teo KYC, Yanagi Y, Wong TY, et al. Morphologic predictors and temporal characteristics of conversion from nonexudative to exudative age-related macular degeneration in the fellow eye[J]. Ophthalmol Retina, 2021, 5(2): 126-140. doi:10.1016/j.oret.2020.07.005 [33] Sanchez MC, Chiabrando GA. Multitarget activities of Müller glial cells and low-density lipoprotein receptor-related protein 1 in proliferative retinopathies[J]. ASN Neuro, 2022, 14: 175909142211363. doi:10.1177/17590914221136365 [34] 林梦圆. 2型糖尿病性视网膜病变与非高密度脂蛋白胆固醇比高密度脂蛋白胆固醇比值的相关性分析[D]. 南昌:南昌大学, 2023 |
| [1] | 张莉苑,郭颖卓,陈蛟,王华,钟定娟. 650 nm低能量红光联合角膜塑形镜控制近视的临床效果[J]. 山东大学耳鼻喉眼学报, 2024, 38(5): 52-57. |
| [2] | 张莉苑,钟定娟,王华. 非手术的近视管理方法与脉络膜的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 149-153. |
| [3] | 张丽净,冯晓星,刘南仙,赵辉明,陈月华. 石墨烯养护鼻罩结合尘螨的皮下特异性免疫治疗在尘螨变应性鼻炎患者中的应用分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 26-32. |
| [4] | 李飏,刘鸫,曹文捷. 红光治疗对近视儿童等效球镜度、眼轴长度及脉络膜厚度影响的Meta分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 74-81. |
| [5] | 陈坤,陆慧,李磊,张帆,杨军,黄琦. 累及儿童多部位的浆细胞型Castleman病1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 54-58. |
| [6] | 周加敏,宋玉婉,孙岩. 细胞焦亡在老年退行性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 172-180. |
| [7] | 赵露,田慧文,孟博,王薇,王艳玲. 颈内动脉闭塞患者黄斑区视网膜脉络膜厚度变化分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 72-76. |
| [8] | 徐恩沛,孙先勇. 渗出性年龄相关性黄斑变性并发视网膜色素上皮脱离的诊治进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 125-142. |
| [9] | 李孟婷,何书喜,王华. 炎症因子在圆锥角膜中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 151-158. |
| [10] | 梁旭,史丽. 慢性鼻窦炎生物靶向药物治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 30-35. |
| [11] | 张陶然,王薇,李明铭,黄映湘. IVR治疗mCNV患者黄斑中心凹下脉络膜厚度分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 68-71. |
| [12] | 张金庄,殷璞,刘宁,王江宇,贾云芬,丁元吉,吴垚. FESS术后加用香菊胶囊与康复新液治疗慢性鼻窦炎伴有鼻息肉的对比研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 69-76. |
| [13] | 傅强,王红星. 眼缺血综合征患者脉络膜厚度的分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 60-63. |
| [14] | 冀帅飞,张婕,严宏. 年龄相关性黄斑变性患者人工晶状体的选择[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 36-39. |
| [15] | 王翠,颜昕,赵博军. IVR联合PDT治疗湿性年龄相关性黄斑变性的临床观察[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 94-97. |
|
||