山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (5): 139-147.doi: 10.6040/j.issn.1673-3770.0.2024.132
• 综述 • 上一篇
张婷1,王美兰2,高映勤2
ZHANG Ting1, WANG Meilan2, GAO Yingqin2
摘要: 白细胞介素 35(interleukin-35, IL-35)是IL-12 家族的一员,是一种主要由调节性T细胞和树突细胞等免疫细胞分泌的免疫调节因子,可诱导不同类型的调节细胞,例如IL-35诱导型调节性T细胞(iTr35)、产生 IL-10 的调节性 B 细胞(IL-10+Bregs),以及产生 IL-35 的调节性 B 细胞(IL-35+Bregs),在许多疾病中调节免疫系统方面发挥着重要作用。多项研究结果表明IL-35具有维持免疫系统平衡、调节炎症反应、抑制细胞免疫应答等重要作用。最近的研究发现IL-35在变应性鼻炎(allergic rhinitis, AR)的发生发展中也具有一定的作用。本文对IL-35进行概述,总结了 IL-35 在变应性鼻炎中的相关研究进展,讨论了其可能参与 AR 的发病机制,假设 IL-35 可能成为治疗AR的新靶点。然而还需要更多的研究进一步来评估这一假设。
中图分类号:
| [1] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国变应性鼻炎诊断和治疗指南(2022年,修订版)[J]. 中华耳鼻咽喉头颈外科杂志, 2022, 57(2): 106-129. doi:10.3760/cma.j.cn115330-20211228-00828 Subspecialty Group of Rhinology, Editorial Board of Chinese journal of Otorhinolaryngology Head and Neck Surgery, Subspecialty Group of Rhinology, Society of Otorhinolaryngology Head and Neck Surgery Chinese Medical Association. Chinese guideline for diagnosis and treatment of allergic rhinitis(2022, revision)[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2022, 57(2): 106-129. doi:10.3760/cma.j.cn115330-20211228-00828 [2] Bousquet J, Khaltaev N, Cruz AA, et al. Allergic Rhinitis and its Impact on Asthma(ARIA)2008 update(in collaboration with the World Health Organization, GA(2)LEN and AllerGen)[J]. Allergy, 2008, 63(Suppl 86): 8-160. doi:10.1111/j.1398-9995.2007.01620.x [3] Brozek JL, Bousquet J, Baena-Cagnani CE, et al. Allergic rhinitis and its impact on asthma(ARIA)guidelines: 2010 revision[J]. J Allergy Clin Immunol, 2010, 126(3): 466-476. doi:10.1016/j.jaci.2010.06.047 [4] Wise SK, Damask C, Greenhawt M, et al. A synopsis of guidance for allergic rhinitis diagnosis and management from ICAR 2023[J]. J Allergy Clin Immunol Pract, 2023, 11(3): 773-796. doi:10.1016/j.jaip.2023.01.007 [5] Bro(·overz)ek JL, Bousquet J, Agache I, et al. Allergic Rhinitis and its Impact on Asthma(ARIA)guidelines-2016 revision[J]. J Allergy Clin Immunol, 2017, 140(4): 950-958. doi:10.1016/j.jaci.2017.03.050 [6] Vignali DAA, Kuchroo VK. IL-12 family cytokines: immunological playmakers[J]. Nat Immunol, 2012, 13(8): 722-728. doi:10.1038/ni.2366 [7] Gee K, Guzzo C, Che Mat NF, et al. The IL-12 family of cytokines in infection, inflammation and autoimmune disorders[J]. Inflamm Allergy Drug Targets, 2009, 8(1): 40-52. doi:10.2174/187152809787582507 [8] Su LC, Liu XY, Huang AF, et al. Emerging role of IL-35 in inflammatory autoimmune diseases[J]. Autoimmun Rev, 2018, 17(7): 665-673. doi:10.1016/j.autrev.2018.01.017 [9] Wang Y, Mao Y, Zhang JF, et al. IL-35 recombinant protein reverses inflammatory bowel disease and psoriasis through regulation of inflammatory cytokines and immune cells[J]. J Cell Mol Med, 2018, 22(2): 1014-1025. doi:10.1111/jcmm.13428 [10] Reza Lahimchi M, Eslami M, Yousefi B. Interleukin-35 and interleukin-37 anti-inflammatory effect on inflammatory bowel disease: application of non-coding RNAs in IBD therapy[J]. Int Immunopharmacol, 2023, 117: 109932. doi:10.1016/j.intimp.2023.109932 [11] Zhang X, Zhang XL, Zhuang LL, et al. Decreased regulatory T-cell frequency and interleukin-35 levels in patients with rheumatoid arthritis[J]. Exp Ther Med, 2018, 16(6): 5366-5372. doi:10.3892/etm.2018.6885 [12] Nicholl MB, Ledgewood CL, Chen XH, et al. IL-35 promotes pancreas cancer growth through enhancement of proliferation and inhibition of apoptosis: evidence for a role as an autocrine growth factor[J]. Cytokine, 2014, 70(2): 126-133. doi:10.1016/j.cyto.2014.06.020 [13] Li ZX, Zhu L, Zheng H, et al. Serum IL-35 levels is a new candidate biomarker of cancer-related Cachexia in stage IV non-small cell lung cancer[J]. Thorac Cancer, 2022, 13(5): 716-723. doi:10.1111/1759-7714.14307 [14] Long J, Guo HY, Cui SC, et al. IL-35 expression in hepatocellular carcinoma cells is associated with tumor progression[J]. Oncotarget, 2016, 7(29): 45678-45686. doi:10.18632/oncotarget.10141 [15] Dong J, Wong CK, Cai Z, et al. Amelioration of allergic airway inflammation in mice by regulatory IL-35 through dampening inflammatory dendritic cells[J]. Allergy, 2015, 70(8): 921-932. doi:10.1111/all.12631 [16] Li Y, Pan XH, Peng X, et al. Adenovirus-mediated interleukin-35 gene transfer suppresses allergic airway inflammation in a murine model of asthma[J]. Inflamm Res, 2015, 64(10): 767-774. doi:10.1007/s00011-015-0858-1 [17] Devergne O, Birkenbach M, Kieff E. Epstein-Barr virus-induced gene 3 and the p35 subunit of interleukin 12 form a novel heterodimeric hematopoietin[J]. Proc Natl Acad Sci USA, 1997, 94(22): 12041-12046. doi:10.1073/pnas.94.22.12041 [18] Collison LW, Workman CJ, Kuo TT, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function[J]. Nature, 2007, 450(7169): 566-569. doi:10.1038/nature06306 [19] Choi J, Leung PS, Bowlus C, et al. IL-35 and autoimmunity: a comprehensive perspective[J]. Clin Rev Allergy Immunol, 2015, 49(3): 327-332. doi:10.1007/s12016-015-8468-9 [20] Thompson A, Orr SJ. Emerging IL-12 family cytokines in the fight against fungal infections[J]. Cytokine, 2018, 111: 398-407. doi:10.1016/j.cyto.2018.05.019 [21] Collison LW, Chaturvedi V, Henderson AL, et al. IL-35-mediated induction of a potent regulatory T cell population[J]. Nat Immunol, 2010, 11(12): 1093-1101. doi:10.1038/ni.1952 [22] Shen P, Roch T, Lampropoulou V, et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases[J]. Nature, 2014, 507(7492): 366-370. doi:10.1038/nature12979 [23] Wang RX, Yu CR, Dambuza IM, et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease[J]. Nat Med, 2014, 20(6): 633-641. doi:10.1038/nm.3554 [24] Haller S, Duval A, Migliorini R, et al. Interleukin-35-producing CD8α+ dendritic cells acquire a tolerogenic state and regulate T cell function[J]. Front Immunol, 2017, 8: 98. doi:10.3389/fimmu.2017.00098 [25] Choi JK, Egwuagu CE. Interleukin 35 regulatory B cells[J]. J Mol Biol, 2021, 433(1): 166607. doi:10.1016/j.jmb.2020.07.019 [26] Collison LW, Delgoffe GM, Guy CS, et al. The composition and signaling of the IL-35 receptor are unconventional[J]. Nat Immunol, 2012, 13(3): 290-299. doi:10.1038/ni.2227 [27] Ye C, Yano H, Workman CJ, et al. Interleukin-35: structure, function and its impact on immune-related diseases[J]. J Interferon Cytokine Res, 2021, 41(11): 391-406. doi:10.1089/jir.2021.0147 [28] Gao P, Su ZZ, Lv XJ, et al. Interluekin-35 in asthma and its potential as an effective therapeutic agent[J]. Mediators Inflamm, 2017, 2017: 5931865. doi:10.1155/2017/5931865 [29] Xie FM, Hu QF, Cai QF, et al. IL-35 inhibited Th17 response in children with allergic rhinitis[J]. ORL J Otorhinolaryngol Relat Spec, 2020, 82(1): 47-52. doi:10.1159/000504197 [30] Kouzaki H, Arikata M, Koji M, et al. Dynamic change of anti-inflammatory cytokine IL-35 in allergen immune therapy for Japanese cedar pollinosis[J]. Allergy, 2020, 75(4): 981-983. doi:10.1111/all.14124 [31] Xie Q, Xu WD, Pan M, et al. Association of IL-35 expression and gene polymorphisms in rheumatoid arthritis[J]. Int Immunopharmacol, 2021, 90: 107231. doi:10.1016/j.intimp.2020.107231 [32] Li YX, Yao LT, Liu SY, et al. Elevated serum IL-35 levels in rheumatoid arthritis are associated with disease activity[J]. J Investig Med, 2019, 67(3): 707-710. doi:10.1136/jim-2018-000814 [33] Sakkas LI, Mavropoulos A, Perricone C, et al. IL-35: a new immunomodulator in autoimmune rheumatic diseases[J]. Immunol Res, 2018, 66(3): 305-312. doi:10.1007/s12026-018-8998-3 [34] Nakano S, Morimoto S, Suzuki S, et al. Immunoregulatory role of IL-35 in T cells of patients with rheumatoid arthritis[J]. Rheumatology, 2015, 54(8): 1498-1506. doi:10.1093/rheumatology/keu528 [35] Wang W, Li P, Chen YF, et al. A potential immunopathogenic role for reduced IL-35 expression in allergic asthma[J]. J Asthma, 2015, 52(8): 763-771. doi:10.3109/02770903.2015.1038390 [36] Abushouk A, Alkhalaf H, Aldamegh M, et al. IL-35 and IL-37 are negatively correlated with high IgE production among children with asthma in Saudi Arabia[J]. J Asthma, 2022, 59(4): 655-662. doi:10.1080/02770903.2021.1878533 [37] Fogel O, Rivière E, Seror R, et al. Role of the IL-12/IL-35 balance in patients with Sj?gren syndrome[J]. J Allergy Clin Immunol, 2018, 142(1): 258-268.e5. doi:10.1016/j.jaci.2017.07.041 [38] Saeed MH, Kurosh K, Zahra A, et al. Decreased serum levels of IL-27and IL-35 in patients with Graves disease[J]. Arch Endocrinol Metab, 2021, 64(5): 521-527. doi:10.20945/2359-3997000000227 [39] Zhao MN, Gu J, Wang ZC. B cells in Crohn's patients presented reduced IL-35 expression capacity[J]. Mol Immunol, 2020, 118: 124-131. doi:10.1016/j.molimm.2019.12.005 [40] Zhao MM, Song JC, Du SS, et al. Serum IL-35 levels are associated with activity and progression of sarcoidosis[J]. Front Immunol, 2020, 11: 977. doi:10.3389/fimmu.2020.00977 [41] Kouzaki H, Arai Y, Nakamura K, et al. Anti-inflammatory roles of interleukin-35 in the pathogenesis of Japanese cedar pollinosis[J]. Asia Pac Allergy, 2021, 11(3): e34. doi:10.5415/apallergy.2021.11.e34 [42] Bayrak Degirmenci P, Aksun S, Altin Z, et al. Allergic rhinitis and its relationship with IL-10, IL-17, TGF-β, IFN-γ, IL 22, and IL-35[J]. Dis Markers, 2018, 2018: 9131432. doi:10.1155/2018/9131432 [43] Ruan GX, Wen XL, Yuan ZW. Correlation between miR-223 and IL-35 and their regulatory effect in children with allergic rhinitis[J]. Clin Immunol, 2020, 214: 108383. doi:10.1016/j.clim.2020.108383 [44] Yokota M, Suzuki M, Nakamura Y, et al. Cytokine modulation by IL-35 in mice with allergic rhinitis[J]. Am J Rhinol Allergy, 2015, 29(4): 251-256. doi:10.2500/ajra.2015.29.4188 [45] Nie MR, Zeng QX, Xi L, et al. The effect of IL-35 on the expression of nasal epithelial-derived proinflammatory cytokines[J]. Mediators Inflamm, 2021, 2021: 1110671. doi:10.1155/2021/1110671 [46] Huang LG, Zhao M, Luo Q, et al. The role and correlation of IL-35 and type II intrinsic lymphocytes in children with allergic rhinitis[J]. Cell Mol Biol, 2021, 67(2): 127-131. doi:10.14715/cmb/2021.67.2.19 [47] Liu WL, Zeng QX, Wen YH, et al. Inhibited interleukin 35 expression and interleukin 35-induced regulatory T cells promote type II innate lymphoid cell response in allergic rhinitis[J]. Ann Allergy Asthma Immunol, 2021, 126(2): 152-161.e1. doi:10.1016/j.anai.2020.08.005 [48] 尹雪, 任秀敏, 刘春苗, 等. 变应性鼻炎患者IL-35对于Treg/Th17细胞平衡的调控作用[J]. 临床耳鼻咽喉头颈外科杂志, 2016, 30(3): 213-216. doi: 10.13201/j.issn.1001-1781.2016.03.011 [49] Suzuki M, Yokota M, Nakamura Y, et al. Intranasal administration of IL-35 inhibits allergic responses and symptoms in mice with allergic rhinitis[J]. Allergol Int, 2017, 66(2): 351-356. doi:10.1016/j.alit.2016.08.014 [50] Huang CH, Loo EX, Kuo IC, et al. Airway inflammation and IgE production induced by dust mite allergen-specific memory/effector Th2 cell line can be effectively attenuated by IL-35[J]. J Immunol, 2011, 187(1): 462-471. doi:10.4049/jimmunol.1100259 [51] Kanai K, Park AM, Yoshida H, et al. IL-35 suppresses lipopolysaccharide-induced airway eosinophilia in EBI3-deficient mice[J]. J Immunol, 2017, 198(1): 119-127. doi:10.4049/jimmunol.1600506 [52] Zeng QX, Zeng YH, Tang YQ, et al. Effect of IL-35 on apoptosis, adhesion, migration, and activation of eosinophils in allergic rhinitis[J]. Pediatr Allergy Immunol, 2022, 33(2): e13717. doi:10.1111/pai.13717 [53] Zeng YH, Xiao HQ, Gao SL, et al. Efficacy and immunological changes of sublingual immunotherapy in pediatric allergic rhinitis[J]. World Allergy Organ J, 2023, 16(7): 100803. doi:10.1016/j.waojou.2023.100803 [54] Akdis CA, Akdis M. Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens[J]. World Allergy Organ J, 2015, 8(1): 17. doi:10.1186/s40413-015-0063-2 [55] Durham SR, Shamji MH. Allergen immunotherapy: past, present and future[J]. Nat Rev Immunol, 2023, 23(5): 317-328. doi:10.1038/s41577-022-00786-1 [56] Layhadi JA, Eguiluz-Gracia I, Shamji MH. Role of IL-35 in sublingual allergen immunotherapy[J]. Curr Opin Allergy Clin Immunol, 2019, 19(1): 12-17. doi:10.1097/ACI.0000000000000499 [57] Shamji MH, Layhadi JA, Achkova D, et al. Role of IL-35 in sublingual allergen immunotherapy[J]. J Allergy Clin Immunol, 2019, 143(3): 1131-1142.e4. doi:10.1016/j.jaci.2018.06.041 [58] Liu WL, Zeng QX, Luo RZ. Predictors for short-term efficacy of allergen-specific sublingual immunotherapy in children with allergic rhinitis[J]. Mediators Inflamm, 2020, 2020: 1847061. doi:10.1155/2020/1847061 [59] Zhou J, Lu Y, Wu W, et al. Taurine promotes the production of CD4+CD25+FOXP3+ Treg cells through regulating IL-35/STAT1 pathway in a mouse allergic rhinitis model[J]. Allergy Asthma Clin Immunol, 2021, 17(1): 59. doi:10.1186/s13223-021-00562-1 [60] Wu XH, He B, Liu J, et al. Molecular insight into gut microbiota and rheumatoid arthritis[J]. Int J Mol Sci, 2016, 17(3): 431. doi:10.3390/ijms17030431 [61] Maeda Y, Takeda K. Host-microbiota interactions in rheumatoid arthritis[J]. Exp Mol Med, 2019, 51(12): 1-6. doi:10.1038/s12276-019-0283-6 [62] Maeda Y, Takeda K. Role of gut microbiota in rheumatoid arthritis[J]. J Clin Med, 2017, 6(6): 60. doi:10.3390/jcm6060060 [63] Zhou MS, Zhang B, Gao ZL, et al. Altered diversity and composition of gut microbiota in patients with allergic rhinitis[J]. Microb Pathog, 2021, 161(Pt A): 105272. doi:10.1016/j.micpath.2021.105272 [64] 王惟一, 时蕾, 张志玉, 等. 高脂饮食对过敏性鼻炎小鼠致敏影响和肠道菌群改变的研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 21-29. doi:10.6040/j.issn.1673-3770.0.2022.137 WANG Weiyi, SHI Lei, ZHANG Zhiyu, et al. Effects of high fat diet on allergic rhinitis mice and intestinal flora[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 21-29. doi:10.6040/j.issn.1673-3770.0.2022.137 [65] Zhu LB, Xu F, Wan WR, et al. Gut microbial characteristics of adult patients with allergy rhinitis[J]. Microb Cell Fact, 2020, 19(1): 171. doi:10.1186/s12934-020-01430-0 [66] Kaczynska A, Klosinska M, Chmiel P, et al. The crosstalk between the gut microbiota composition and the clinical course of allergic rhinitis: the use of probiotics, prebiotics and bacterial lysates in the treatment of allergic rhinitis[J]. Nutrients, 2022, 14(20): 4328. doi:10.3390/nu14204328 [67] Sahoyama Y, Hamazato F, Shiozawa M, et al. Multiple nutritional and gut microbial factors associated with allergic rhinitis: the hitachi health study[J]. Sci Rep, 2022, 12(1): 3359. doi:10.1038/s41598-022-07398-8 [68] Xue JM, Ma F, An YF, et al. Probiotic extracts ameliorate nasal allergy by inducing interleukin-35-producing dendritic cells in mice[J]. Int Forum Allergy Rhinol, 2019, 9(11): 1289-1296. doi:10.1002/alr.22438 [69] Su XM, Zhang MY, Qi HB, et al. Gut microbiota-derived metabolite 3-idoleacetic acid together with LPS induces IL-35+ B cell generation[J]. Microbiome, 2022, 10(1): 13. doi:10.1186/s40168-021-01205-8 |
| [1] | 许雪萌,樊磊,喻望博,蒋芝月,潘晨,黄泳芹. 奥马珠单抗联合特异性免疫治疗变应性鼻炎疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2025, 39(5): 26-33. |
| [2] | 刘怡君,谷悦,官大宇,杨玉成,沈暘. 翼管神经切断术在难治性变应性鼻炎中远期临床疗效和安全性[J]. 山东大学耳鼻喉眼学报, 2025, 39(5): 42-48. |
| [3] | 尹振乾,皇甫辉. 头颈部木村病1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2025, 39(5): 104-107. |
| [4] | 张竹萍,彭孜灿,肖振龙,李程,喻迪,王兴龙,陈伟,郭蓓. 新型鼻分泌物嗜酸粒细胞阳离子蛋白-髓过氧化物酶试纸在变应性鼻炎中的应用价值[J]. 山东大学耳鼻喉眼学报, 2025, 39(3): 129-134. |
| [5] | 曹正勇,李小波. 慢性鼻-鼻窦炎合并哮喘术后短程局部使用糖皮质激素辅助治疗的安全性和有效性[J]. 山东大学耳鼻喉眼学报, 2025, 39(2): 43-50. |
| [6] | 刘畅,杨景朴,高雨,王文佳. 长春地区儿童变应性鼻炎变应原检测结果分析[J]. 山东大学耳鼻喉眼学报, 2025, 39(2): 51-58. |
| [7] | 周荷青,申琪. 中医药治疗变应性鼻炎疗效的生物标志物研究进展[J]. 山东大学耳鼻喉眼学报, 2025, 39(2): 168-176. |
| [8] | 张婕,尼玛吉宗,徐小东,周菁,刘建敏,罗依蕤,杜进涛,巴罗. 藏红花素在嗜酸性慢性鼻窦炎伴鼻息肉中调控2型炎症反应的研究[J]. 山东大学耳鼻喉眼学报, 2025, 39(1): 61-67. |
| [9] | 王曼娴,郑泉,杨亮. 细菌裂解物治疗变应性鼻炎的研究进展[J]. 山东大学耳鼻喉眼学报, 2025, 39(1): 141-145. |
| [10] | 刘畅,方宏艳,刘敩,富东娜,王贺,王晶,杨景朴. 长春地区秋季变应性鼻炎蒿属花粉致敏特征分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(5): 13-19. |
| [11] | 陈兴雪,张广玲,武天义,王卫卫,孙占伟,李世超,王广科. 抗IL-4Rα单克隆抗体与鼻内镜手术治疗嗜酸性粒细胞型慢性鼻窦炎伴鼻息肉的疗效分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 43-54. |
| [12] | 朱朗,刘志奇. 移动医疗提供的真实世界数据在变应性鼻炎治疗方案中的参考[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 135-139. |
| [13] | 张静祎,董湘依,牟亚魁,宋西成. 细胞焦亡在耳鼻咽喉科疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 140-148. |
| [14] | 张丽净,冯晓星,刘南仙,赵辉明,陈月华. 石墨烯养护鼻罩结合尘螨的皮下特异性免疫治疗在尘螨变应性鼻炎患者中的应用分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 26-32. |
| [15] | 樊永将,黄卫,何成山,沈海涛,徐正,郝亚楠. SARS-CoV-2感染后成人急性分泌性中耳炎细胞因子水平分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 1-6. |
|
||