山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (1): 141-145.doi: 10.6040/j.issn.1673-3770.0.2023.278
• 综述 • 上一篇
王曼娴,郑泉,杨亮
WANG Manxian, ZHENG Quan, YANG Liang
摘要: 变应性鼻炎(allergic rhinitis, AR)作为耳鼻咽喉科的常见疾病,可严重影响患者的工作生活并带来经济负担,是日益严重的全球公共卫生问题。尽管随着AR发病机制研究的深入,治疗方法不断完善,但其患病率仍呈上升趋势。寻找新的、经济有效的治疗方法迫在眉睫。根据“卫生学假说”,病原体接触与变应性疾病发生之间具有高度相关性,通过病原体接触调节宿主免疫反应成为相关疾病的治疗靶点。细菌裂解物(bacterial lysates, BLs)在呼吸道疾病治疗中的应用已有数十年的历史,BLs是通过裂解呼吸道感染中常见病原体获得的抗原混合物,具有免疫调节功能,可降低炎症和恢复Th1/Th2平衡。近年来,越来越多的研究证据表明BLs在AR的预防和治疗中也有较好的临床效果。本文将对近年来BLs在AR治疗中的作用机制及临床效果的研究进展进行综述,以期提高临床工作者对BLs在AR治疗中的认识。
中图分类号:
[1] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国变应性鼻炎诊断和治疗指南(2022年,修订版)[J]. 中华耳鼻咽喉头颈外科杂志, 2022, 57(2): 106-129. doi:10.3760/cma.j.cn115330-20211228-00828 [2] 倪璟滋, 万文锦. 变应性鼻炎健康相关生活质量研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3)110-115, 122. doi: 10.6040/j.issn.1673-3770.1.2021.165 NI Jingzi, WAN Wenjin. Research progress on health-related quality of life in allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3)110-115, 122. doi: 10.6040/j.issn.1673-3770.1.2021.165 [3] Biering LMK, Tea S, Allan L. Allergic rhinitis and allergic sensitisation are still increasing among Danish adults[J]. Allergy, 2020, 75(3): 660-668. doi:10.1111/all.14046. [4] Tong H, Gao L, Deng YQ, et al. Prevalence of allergic rhinitis and associated risk factors in 6 to 12 years schoolchildren from Wuhan in central China: a cross-sectional study[J]. Am J Rhinol Allergy, 2020, 34(5): 632-641. doi:10.1177/1945892420920499 [5] Li F, Zhou YC, Li SH, et al. Prevalence and risk factors of childhood allergic diseases in eight metropolitan cities in China: a multicenter study[J]. BMC Public Health, 2011, 11: 437. doi:10.1186/1471-2458-11-437 [6] Ma TT, Wang XD, Zhuang Y, et al. Prevalence and risk factors for allergic rhinitis in adults and children living in different grassland regions of Inner Mongolia[J]. Allergy, 2020, 75(1): 234-239. doi:10.1111/all.13941 [7] Sasaki M, Morikawa E, Yoshida K, et al. The change in the prevalence of wheeze, eczema and rhino-conjunctivitis among Japanese children: findings from 3 nationwide cross-sectional surveys between 2005 and 2015[J]. Allergy, 2019, 74(8): 1572-1575. doi:10.1111/all.13773 [8] Avdeeva KS, Reitsma S, Fokkens WJ. Direct and indirect costs of allergic and non-allergic rhinitis in the Netherlands[J]. Allergy, 2020, 75(11): 2993-2996. doi:10.1111/all.14457 [9] Esposito S, Soto-Martinez ME, Feleszko W, et al. Nonspecific immunomodulators for recurrent respiratory tract infections, wheezing and asthma in children: a systematic review of mechanistic and clinical evidence[J]. Curr Opin Allergy Clin Immunol, 2018, 18(3): 198-209. doi:10.1097/ACI.0000000000000433 [10] Meng Q, Li P, Li Y, et al. Broncho-vaxom alleviates persistent allergic rhinitis in patients by improving Th1/Th2 cytokine balance of nasal mucosa[J]. Rhinology, 2019, 57(6): 451-459. doi:10.4193/Rhin19.161 [11] Okubo K, Kurono Y, Ichimura K, et al. Japanese guidelines for allergic rhinitis 2020[J]. Allergol Int, 2020, 69(3): 331-345. doi:10.1016/j.alit.2020.04.001 [12] Muñoz-Bellido FJ, Moreno E, Dávila I. Dupilumab: a review of present indications and off-label uses[J]. J Investig Allergol Clin, 2022, 32(2): 97-115. doi:10.18176/jiaci.0682 [13] Gonzalez-Figueroa P, Roco JA, Papa I, et al. Follicular regulatory T cells produce neuritin to regulate B cells[J]. Cell, 2021, 184(7): 1775-1789.e19. doi:10.1016/j.cell.2021.02.027 [14] Golebski K, Layhadi JA, Sahiner U, et al. Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response[J]. Immunity, 2021, 54(2): 291-307.e7. doi:10.1016/j.immuni.2020.12.013 [15] Edwards MR, Walton RP, Jackson DJ, et al. The potential of anti-infectives and immunomodulators as therapies for asthma and asthma exacerbations[J]. Allergy, 2018, 73(1): 50-63. doi:10.1111/all.13257 [16] Yin J, Xu BP, Zeng XT, et al. Broncho-Vaxom in pediatric recurrent respiratory tract infections: a systematic review and meta-analysis[J]. Int Immunopharmacol, 2018, 54: 198-209. doi:10.1016/j.intimp.2017.10.032 [17] Ferrara F, Rial A, Suárez N, et al. Polyvalent bacterial lysate protects against pneumonia independently of neutrophils, IL-17A or caspase-1 activation[J]. Front Immunol, 2021, 12: 562244. doi:10.3389/fimmu.2021.562244 [18] Parola C, Salogni L, Vaira X, et al. Selective activation of human dendritic cells by OM-85 through a NF-kB and MAPK dependent pathway[J]. PLoS One, 2013, 8(12): e82867. doi:10.1371/journal.pone.0082867 [19] Luan H, Zhang Q, Wang L, et al. OM85-BV induced the productions of IL-1β, IL-6, and TNF-α via TLR4- and TLR2-mediated ERK1/2/NF-κB pathway in RAW264.7 cells[J]. J Interf Cytokine Res, 2014, 34(7): 526-536. doi:10.1089/jir.2013.0077 [20] Sun Yuting, Zhou Liyu, Chen Weikai, et al. Immune metabolism: a bridge of dendritic cells function[J]. Int Rev Immunol, 2022, 41(3):313-325. doi: 10.1080/08830185.2021.1897124 [21] Suárez N, Ferrara F, Rial A, et al. Bacterial lysates as immunotherapies for respiratory infections: methods of preparation[J]. Front Bioeng Biotechnol, 2020, 8: 545. doi:10.3389/fbioe.2020.00545 [22] Kearney SC, Dziekiewicz M, Feleszko W. Immunoregulatory and immunostimulatory responses of bacterial lysates in respiratory infections and asthma[J]. Ann Allergy Asthma Immunol, 2015, 114(5): 364-369. doi:10.1016/j.anai.2015.02.008 [23] Le Souëf P. Viral infections in wheezing disorders[J]. Eur Respir Rev, 2018, 27(147): 170133. doi:10.1183/16000617.0133-2017 [24] de Boer GM, Zókiewicz J, Strzelec KP, et al. Bacterial lysate therapy for the prevention of wheezing episodes and asthma exacerbations: a systematic review and meta-analysis[J]. Eur Respir Rev, 2020, 29(158): 190175. doi:10.1183/16000617.0175-2019 [25] Lu YM, Li YQ, Xu LY, et al. Bacterial lysate increases the percentage of natural killer T cells in peripheral blood and alleviates asthma in children[J]. Pharmacology, 2015, 95(3/4): 139-144. doi:10.1159/000377683 [26] Liu CT, Huang R, Yao RJ, et al. The immunotherapeutic role of bacterial lysates in a mouse model of asthma[J]. Lung, 2017, 195(5): 563-569. doi:10.1007/s00408-017-0003-8 [27] Bartkowiak-Emeryk M, Emeryk A, Roliński J, et al. Impact of polyvalent mechanical bacterial lysate on lymphocyte number and activity in asthmatic children: a randomized controlled trial[J]. Allergy Asthma Clin Immunol, 2021, 17(1): 10. doi:10.1186/s13223-020-00503-4 [28] Dang AT, Pasquali C, Ludigs K, et al. OM-85 is an immunomodulator of interferon-β production and inflammasome activity[J]. Sci Rep, 2017, 7(1): 1-9. doi:10.1038/srep43844 [29] Janeczek K, Emeryk A, Rachel M, et al. Polyvalent mechanical bacterial lysate administration improves the clinical course of grass pollen-induced allergic rhinitis in children: a randomized controlled trial[J]. J Allergy Clin Immunol Pract, 2021, 9(1):453-62. doi: 10.1016/j.jaip.2020.08.025 [30] Cardinale F, Lombardi E, Rossi O, et al. Epithelial dysfunction, respiratory infections and asthma: the importance of immunomodulation. A focus on OM-85[J]. Expert Rev Respir Med, 2020, 14(10):1019-1026. doi: 10.1080/17476348.2020.1793673 [31] Jurkiewicz D, Zielnik-Jurkiewicz B. Bacterial lysates in the prevention of respiratory tract infections[J]. Otolaryngol Pol, 2018, 72(5): 1-8. doi:10.5604/01.3001.0012.7216 [32] Cao CQ, Wang JH, Li YN, et al. Efficacy and safety of OM-85 in paediatric recurrent respiratory tract infections which could have a possible protective effect on COVID-19 pandemic: a meta-analysis[J]. Int J Clin Pract, 2021, 75(5): e13981. doi:10.1111/ijcp.13981 [33] Esposito S, Cassano M, Cutrera R, et al. Expert consensus on the role of OM-85 in the management of recurrent respiratory infections: a Delphi study[J]. Hum Vaccin Immunother, 2022, 18(6): 2106720. doi:10.1080/21645515.2022.2106720 [34] Cantarutti A, Barbieri E, Scamarcia A, et al. Use of the bacterial lysate OM-85 in the paediatric population in Italy: a retrospective cohort study[J]. Int J Environ Res Public Health, 2021, 18(13): 6871. doi:10.3390/ijerph18136871 [35] Esposito S, Bianchini S, Bosis S, et al. A randomized, placebo-controlled, double-blinded, single-centre, phase IV trial to assess the efficacy and safety of OM-85 in children suffering from recurrent respiratory tract infections[J]. J Transl Med, 2019, 17(1): 284. doi:10.1186/s12967-019-2040-y [36] Koatz AM, Coe NA, Cicerán A, et al. Clinical and immunological benefits of OM-85 bacterial lysate in patients with allergic rhinitis, asthma, and COPD and recurrent respiratory infections[J]. Lung, 2016, 194(4): 687-697. doi:10.1007/s00408-016-9880-5 [37] Cinicola BL, Brindisi G, Capponi M, et al. The allergic phenotype of children and adolescents with selective IgA deficiency: a longitudinal monocentric study[J]. J Clin Med, 2022, 11(19): 5705. doi:10.3390/jcm11195705 [38] Banche G, Allizond V, Mandras N, et al. Improvement of clinical response in allergic rhinitis patients treated with an oral immunostimulating bacterial lysate: in vivo immunological effects[J]. Int J Immunopathol Pharmacol, 2007, 20(1): 129-138. doi:10.1177/039463200702000115 [39] Janeczek K, Emeryk A, Rapiejko P. Effect of polyvalent bacterial lysate on the clinical course of pollen allergic rhinitis in children[J]. Pdia, 2019, 36(4): 504-505. doi:10.5114/ada.2019.87457 [40] Kowalska M, Emeryk A, Janeczek K, et al. Effect of nasal polivalent bacterial lysate on the clinical course of seasonal allergic rhinitis in children-preliminary study[C] //Paediatric asthma and allergy. European Respiratory Society, 2020: 56(suppl 64): 1208. doi:10.1183/13993003.congress-2020.1208 [41] Kaczynska A, Klosinska M, Janeczek K, et al. Promising immunomodulatory effects of bacterial lysates in allergic diseases[J]. Front Immunol, 2022, 13: 907149. doi:10.3389/fimmu.2022.907149 [42] Janeczek K, Kaczyńska A, Emeryk A, et al. Perspectives for the use of bacterial lysates for the treatment of allergic rhinitis: a systematic review[J]. J Asthma Allergy, 2022, 15: 839-850. doi:10.2147/jaa.s360828 [43] Janeczek K, Kowalska W, Zarobkiewicz M, et al. Effect of immunostimulation with bacterial lysate on the clinical course of allergic rhinitis and the level of gdT, iNKT and cytotoxic T cells in children sensitized to grass pollen allergens: A randomized controlled trial[J]. Front Immunol, 2023, 14:1073788. doi: 10.3389/fimmu.2023.1073788 |
[1] | 张婕,尼玛吉宗,徐小东,周菁,刘建敏,罗依蕤,杜进涛,巴罗. 藏红花素在嗜酸性慢性鼻窦炎伴鼻息肉中调控2型炎症反应的研究[J]. 山东大学耳鼻喉眼学报, 2025, 39(1): 61-67. |
[2] | 张韵秋,任秀敏,徐鸥,董金辉,王建星. 奥马珠单抗靶向治疗慢性鼻窦炎伴鼻息肉的研究进展[J]. 山东大学耳鼻喉眼学报, 2025, 39(1): 136-140. |
[3] | 刘畅,方宏艳,刘敩,富东娜,王贺,王晶,杨景朴. 长春地区秋季变应性鼻炎蒿属花粉致敏特征分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(5): 13-19. |
[4] | 朱朗,刘志奇. 移动医疗提供的真实世界数据在变应性鼻炎治疗方案中的参考[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 135-139. |
[5] | 张静祎,董湘依,牟亚魁,宋西成. 细胞焦亡在耳鼻咽喉科疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 140-148. |
[6] | 张丽净,冯晓星,刘南仙,赵辉明,陈月华. 石墨烯养护鼻罩结合尘螨的皮下特异性免疫治疗在尘螨变应性鼻炎患者中的应用分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 26-32. |
[7] | 苏日古格,李花,乌日柴夫,韩额尔德木图,孟永梅. 基于网络药理学及动物实验探讨蒙药胡日查-6治疗变应性鼻炎的作用机制研究[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 41-51. |
[8] | 朱晗,刘雪霞,张华. 自噬在变应性鼻炎发病的作用机制研究[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 79-86. |
[9] | 孙汐文,骆春雨,李志鹏,张维天. 铁死亡在呼吸道炎症性疾病中的作用及研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 24-32. |
[10] | 卢淦,邓玉琴,陶泽璋. 过敏性疾病与糖尿病的相关性及潜在关联机制[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 215-222. |
[11] | 侯凌霄,展长翠,许安廷,范新泰,王娜. 鼻黏膜组织CD4+ T细胞参与季节性变应性鼻炎发病机制的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 96-104. |
[12] | 袁玥,付圣尧,姜彦,陈敏. 细胞焦亡在慢性气道炎症性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 166-171. |
[13] | 翟睿,李园,于敬龙,陈溪,郑酉友,刘兆兰,王俊宏. 揿针治疗变应性鼻炎临床疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 35-45. |
[14] | 程雷,许秋艳,陈浩. 变态反应检测与诊断的临床应用及意义[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 1-6. |
[15] | 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14. |
|