山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (4): 1-7.doi: 10.6040/j.issn.1673-3770.0.2020.399

• 论著 •    下一篇

儿茶素抑制卵清蛋白诱导的过敏性鼻炎小鼠模型炎症反应的机制研究

李化静,郝润梅,戴皓,张令,申震,权芳,邵渊   

  1. 西安交通大学第一附属医院 耳鼻咽喉头颈外科, 陕西 西安 710061
  • 发布日期:2021-08-05
  • 通讯作者: 邵渊. E-mail:Shaxiaoying1976@163.com
  • 基金资助:
    陕西省科技计划重点研发计划(2020-SF-A20);陕西省自然科学基础研计划(2020JM-382)

Mechanism of inhibition of ovalbumin-induced inflammation by catechins in an OVA-induced mouse model of allergic rhinitis

LI Huajing, HAO Runmei, DAI Hao, ZHANG Ling, SHEN Zhen, QUAN Fang, SHAO Yuan   

  1. Department of Otolaryngology & Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
  • Published:2021-08-05

摘要: 目的 研究儿茶素抑制卵清蛋白(OVA)诱导的过敏性鼻炎小鼠炎症反应的机制。 方法 将BALB/c小鼠随机分为对照组、模型组(OVA诱导的过敏性鼻炎小鼠模型),儿茶素低、中和高剂量组(用50、100和200 mg/kg的儿茶素治疗的过敏性鼻炎小鼠)和氯雷他定(2 mg/kg氯雷他定治疗的过敏性鼻炎小鼠)组,每组10只。治疗后对各组小鼠进行症状评分。使用苏木精-伊红、Giemsa、Periodic acid-Schiff和甲苯胺蓝对鼻组织切片进行染色。使用ELISA试剂盒检测小鼠鼻腔灌洗液(NALF)中的Th1相关细胞因子(TNF-γ和IL-12)、Th2相关细胞因子(TNF-α、IL-1β和IL-6)、Th17相关细胞因子(IL-17A)水平。使用ELISA试剂盒检测小鼠血清中OVA特异性IgE和IgG1。通过Western blot检测小鼠鼻黏膜组织中NF-κB p65、nucleus-NF-κB p65、STAT3、p-STAT3和ROR-γt的蛋白表达。 结果 与模型组相比,儿茶素中剂量和高剂量组小鼠的症状评分明显降低(F=13.245,P<0.001);儿茶素治疗以剂量依赖性方式降低了鼻黏膜组织中的嗜酸性粒细胞杯状细胞和肥大细胞数(F=15.462,P<0.001);儿茶素治疗以剂量依赖性方式降低了小鼠血清OVA特异性IgE和IgG1的水平(F=21.544,P<0.001)。各组小鼠NALF中Th1相关细胞因子水平无变化(TNF-γ:F=0.753,P=0.600;IL-12:F=0.846,P=0.519)。与模型组相比,儿茶素治疗以剂量依赖性方式降低了小鼠NALF中Th2(TNF-α:F=11.100,P<0.001;IL-1β:F=12.554,P<0.001;IL-6:F=17.853,P<0.001)和Th17相关细胞因子的水平(IL-17A:F=28.139,P<0.001)。与模型组相比,儿茶素治疗以剂量依赖性方式降低了小鼠鼻黏膜组织中nucleus-NF-κB p65(F=17.573,P<0.001)、ROR-γt(F=26.463,P<0.001)和p-STAT3的水平(F=17.859,P<0.001)。 结论 儿茶素在OVA诱导的过敏性鼻炎小鼠模型中具有较好的抗炎效果。儿茶素的抗炎机制与纠正Th1/Th2细胞因子平衡、抑制Th17反应、抑制NF-κB和ROR-γt/ STAT3途径有关。

关键词: 过敏性鼻炎, 儿茶素, 卵清蛋白, 炎症, Th1/Th2/Th17细胞因子

Abstract: Objective This study aimed to analyze the mechanism of inhibition of ovalbumin(OVA)-induced inflammation by catechins in mice with allergic rhinitis. Methods BALB/c mice were randomly divided into a control group(OVA-induced mouse model of allergic rhinitis; model group); low-, medium-, and high-dose catechin groups(mice with allergic rhinitis treated with 50, 100, and 200 mg/kg of catechins, respectively), and a loratadine group(mice with allergic rhinitis treated with 2 mg/kg of loratadine). Each group included 10 mice. After treatment, the symptoms in each group were scored. Hematoxylin and eosin, Giemsa, periodic acid-Schiff, and toluidine blue were used to stain the nasal tissue sections. ELISA kits were used to detect Th1-related(TNF-α and IL-12), Th2-related(TNF-α, IL-1β, and IL-6), and Th17-related cytokine(IL-17A)levels in the mouse nasal lavage fluid(NALF). ELISA kits were also used to detect OVA-specific IgE and IgG1 in the mouse serum. Furthermore, we detected the protein expression of NF-κB p65, nucleus NF-κB p65, STAT3, p-STAT3, and ROR-γt in the mouse nasal mucosa using western blotting. Results The symptom scores of the middle- and high-dose catechin treatment groups were significantly lower than those of the model group(F=13.245, P<0.001). The catechin treatment groups had a lesser number of eosinophils, goblet cells, and mast cells in the nasal mucosa and lower levels of OVA-specific IgE and IgG1(F=15.462, P<0.001 and F=21.544, P<0.001, respectively)than the model group. The number of the abovementioned cells and levels OVA-specific IgE and IgG1 were reduced in a dose-dependent manner. In all groups, the levels of Th1-related cytokines in the NALF of mice did not significantly change(TNF-γ: F=0.753, P=0.600; IL-12: F=0.846, P=0.519).Furthermore, the catechin treatment groups had lower levels of Th2-related cytokines(TNF-α: F=11.100, P<0.001; IL-1β: F=12.554, P<0.001; IL-6: F=17.853, P<0.001), Th17-related cytokines(IL-17A: F=28.139, P<0.001), nucleus-NF-κB p65(F=17.573, P<0.001), ROR-γt(F=26.463, P<0.001), and p-STAT3(F=17.859, P<0.001)than the model group; there was a dose-dependent reduction in these levels. Conclusion Catechins have a good anti-inflammatory effect in mice with OVA-induced allergic rhinitis. The anti-inflammatory mechanism of catechins is related to correction of the Th1/Th2 cytokine balance, inhibition of the Th17 response, and inhibition of the NF-κB and ROR-γt/STAT3 pathways.

Key words: Allergic rhinitis, Catechins, Ovalbumin, Inflammation, Th1/Th2/Th17 cytokines

中图分类号: 

  • R765.21
[1] 林兴, 沈翎, 林宗通, 等. 儿童鼻腔异物与过敏性鼻炎关系的初步研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 101-104. doi:10.6040/j.issn.1673-3770.0.2020.243. LIN Xing, SHEN Ling, LIN Zongtong, et al. Relationship between nasal foreign body and allergic rhinitis in children: a preliminary study[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 101-104. doi:10.6040/j.issn.1673-3770.0.2020.243.
[2] Bernstein DI, Schwartz G, Bernstein JA. Allergic rhinitis: mechanisms and treatment[J]. Immunol Allergy Clin N Am, 2016, 36(2): 261-278. doi:10.1016/j.iac.2015.12.004.
[3] Bayar Muluk N, Bafaqeeh SA, Cingi C. Anti-IgE treatment in allergic rhinitis[J]. Int J Pediatr Otorhinolaryngol, 2019, 127: 109674. doi:10.1016/j.ijporl.2019.109674.
[4] Ma K, Zhang H, Baloch Z. Pathogenetic and therapeutic applications of tumor necrosis factor-α(TNF-α)in major depressive disorder: a systematic review[J]. Int J Mol Sci, 2016, 17(5). doi:10.3390/ijms17050733. doi:10.3390/ijms17050733.
[5] Chen XW, Zhou SF. Inflammation, cytokines, the IL-17/IL-6/STAT3/NF-κB axis, and tumorigenesis[J]. Drug Des Devel Ther, 2015, 9: 2941-2946. doi:10.2147/dddt.s86396.
[6] Sun N, Guo H, Wang Y. Retinoic acid receptor-related orphan receptor gamma-t(RORγt)inhibitors in clinical development for the treatment of autoimmune diseases: a patent review(2016-present)[J]. Expert Opin Ther Pat, 2019, 29(9): 663-674. doi:10.1080/13543776.2019.1655541.
[7] Wee JH, Zhang YL, Rhee CS, et al. Inhibition of allergic response by intranasal selective NF-κB decoy oligodeoxynucleotides in a murine model of allergic rhinitis[J]. Allergy Asthma Immunol Res, 2017, 9(1): 61-69. doi:10.4168/aair.2017.9.1.61.
[8] Zhou E, Fu Y, Wei Z, et al. Inhibition of allergic airway inflammation through the blockage of NF-κB activation by ellagic acid in an ovalbumin-induced mouse asthma model[J]. Food Funct, 2014, 5(9): 2106-2112. doi:10.1039/c4fo00384e.
[9] Mathur S, Hoskins C. Drug development: Lessons from nature[J]. Biomed Rep, 2017, 6(6): 612-614. doi:10.3892/br.2017.909.
[10] Lee HA, Song YR, Park MH, et al. Catechin ameliorates Porphyromonas gingivalis-induced inflammation via the regulation of TLR2/4 and inflammasome signaling[J]. J Periodontol, 2020, 91(5): 661-670. doi:10.1002/JPER.18-0004.
[11] Syed Hussein SS, Kamarudin MNA, Abdul Kadir H.(+)-catechin attenuates NF-κB activation through regulation of Akt, MAPK, and AMPK signaling pathways in LPS-induced BV-2 microglial cells[J]. Am J Chin Med, 2015, 43(5): 927-952. doi:10.1142/s0192415x15500548.
[12] 闫亚杰, 阮岩, 潘增烽, 等. 儿茶素对变应性鼻炎小鼠Th17/Treg表达的影响[J]. 中药新药与临床药理, 2018,29(3): 251-256. doi:10.19378/j.issn.1003-9783.2018.03.001. YAN Yajie, RUAN Yan, PAN Zengfeng, et al. Effects of catechin on the expression of Th17/treg in allergic rhinitis mice[J]. Tradit Chin Drug Res Clin Pharmacol, 2018,29(3): 251-256. doi:10.19378/j.issn.1003-9783.2018.03.001.
[13] Pan ZF, Zhou Y, Luo X, et al. Against NF-κB/thymic stromal lymphopoietin signaling pathway, catechin alleviates the inflammation in allergic rhinitis[J]. Int Immunopharmacol, 2018, 61: 241-248. doi:10.1016/j.intimp.2018.06.011.
[14] Kim DY, Fukuyama S, Nagatake T, et al. Implications of nasopharynx-associated lymphoid tissue(NALT)in the development of allergic responses in an allergic rhinitis mouse model[J]. Allergy, 2012, 67(4): 502-509. doi:10.1111/j.1398-9995.2011.02782.x.
[15] 郑永艳, 周园, 周联, 等. 小青龙汤抗过敏作用及其机制研究[J]. 时珍国医国药, 2017, 28(5): 1052-1055. doi:10.3969/j.issn.1008-0805.2017.05.011.
[16] Fan XH, Cheng L, Yan AH. Ameliorative effect of acetylshikonin on ovalbumin(OVA)-induced allergic rhinitis in mice through the inhibition of Th2 cytokine production and mast cell histamine release[J]. APMIS, 2019, 127(10): 688-695. doi:10.1111/apm.12984.
[17] Ciprandi G, Marseglia GL, Castagnoli R, et al. From IgE to clinical trials of allergic rhinitis[J]. Expert Rev Clin Immunol, 2015, 11(12): 1321-1333. doi:10.1586/1744666x.2015.1086645.
[18] Batard T, Weyer A, Laroze A, et al. Isotypic analysis of grass pollen-specific antibodies in human plasma. 4. Biological activity of allergen-specific and autoanti-IgE antibody fractions on basophil histamine release[J]. Clin Exp Allergy, 1996, 26(11): 1308-1315. doi:10.1111/j.1365-2222.1996.tb00528.x.
[19] Ulanova M, Asfaha S, Stenton G, et al. Involvement of Syk protein tyrosine kinase in LPS-induced responses in macrophages[J]. J Endotoxin Res, 2007, 13(2): 117-125. doi:10.1177/0968051907079125.
[20] Yoshino S, Mizutani N, Matsuoka D, et al. Intratracheal exposure to Fab fragments of an allergen-specific monoclonal antibody regulates asthmatic responses in mice[J]. Immunology, 2014, 141(4): 617-627. doi:10.1111/imm.12225.
[21] Bf M. Allergic rhinitis and inflammatory airway disease: interactions within the unifiedairspace[J]. Chinese Medical Digest(Otorhinolaryngology), 2011,26(2): 111. doi:10.19617/j.issn1001-1307.2011.02.026.
[22] Tan HL, Rosenthal M. IL-17 in lung disease: friend or foe?[J]. Thorax, 2013, 68(8): 788-790. doi:10.1136/thoraxjnl-2013-203307.
[23] Sun SC. The non-canonical NF-κB pathway in immunity and inflammation[J]. Nat Rev Immunol, 2017, 17(9): 545-558. doi:10.1038/nri.2017.52.
[24] Zhang K, Liu JY, You XT, et al. P2X7 as a new target for chrysophanol to treat lipopolysaccharide-induced depression in mice[J]. Neurosci Lett, 2016, 613: 60-65. doi:10.1016/j.neulet.2015.12.043.
[25] Mitchell JP, Carmody RJ. NF-κB and the transcriptional control of inflammation[J]. Int Rev Cell Mol Biol, 2018, 335: 41-84. doi:10.1016/bs.ircmb.2017.07.007.
[26] 倪菁, 雷飞, 白丹, 等. 儿童分泌性中耳炎耳积液中免疫相关指标表达分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 56-59. doi:10.6040/j.issn.1673-3770.0.2018.230. NI Jing, LEI Fei, BAI Dan, et al. Expression of immunological markers in middle ear effusion in children with secretory otitis media[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 56-59. doi:10.6040/j.issn.1673-3770.0.2018.230.
[27] Subbanna M, Shivakumar V, Talukdar PM, et al. Role of IL-6/RORC/IL-22 axis in driving Th17 pathway mediated immunopathogenesis of schizophrenia[J]. Cytokine, 2018, 111: 112-118. doi:10.1016/j.cyto.2018.08.016.
[1] 朱晶,张睿,赵媛,李炀,樊孟耘,赵昱. 内镜下低温等离子消融治疗不同炎症分期先天性梨状窝瘘45例[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 24-29.
[2] 马静远, 武天义, 孙占伟, 王卫卫, 李世超, 王广科. 鼻腔鼻窦内翻性乳头状瘤与外周血炎症标志物的相关性研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 35-39.
[3] 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14.
[4] 梁旭,史丽. 慢性鼻窦炎生物靶向药物治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 30-35.
[5] 石帅,郑泉,程雷. 度普利尤单抗在慢性鼻窦炎伴鼻息肉治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 36-42.
[6] 黄丹怡,张婷,陈静,张薇. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83.
[7] 刘真,宋西成. 细胞焦亡在变应性鼻炎中的作用机制及研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 123-129.
[8] 王娜,柴向斌. 前列腺源性ETS因子在哮喘及鼻黏膜炎性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 136-141.
[9] 刘一潼,周穗子,邱前辉. NLRP3炎症小体在慢性鼻窦炎和变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 142-146.
[10] 张雅琪,刘慧敏,曹淋曼,王子钰,林旭,李燕萍,薛刚,吴靖芳. MAPK、PI3K-AKT、NF-κB在小鼠过敏性鼻炎中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 254-259.
[11] 狄宇,李莹. 干眼炎症反应机制及抗炎治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 144-150.
[12] 庞冲,边赛男,张冰,尹旭,陆颖霞,叶鹏飞,王湛,赵晶,高彦,关凯. 儿童过敏性鼻炎粉尘螨特异性舌下免疫治疗短期疗效评估[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 70-74.
[13] 王鑫,刘巧平,闫占峰,刘思溟,朱雅静,丁倩,张莹,田媛,张京然. 基于网络药理学探究小青龙汤治疗过敏性鼻炎的作用机制[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 46-55.
[14] 王宇婷,王嘉玺. microRNA在过敏性鼻炎发病机制中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 98-104.
[15] 张旭平,刘雪霞张华. 外泌体在变态反应性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 136-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨长亮,黄治物,姚行齐,诸勇,孙艺 . 正常气骨导听性脑干反应及其应用[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 9 -13 .
[2] 曹忠良 . 颌面复合伤155例临床分析[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 89 -89 .
[3] 毕景云 . 鼻中隔矫正术后血肿的处理[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 90 -91 .
[4] 刘大昱,潘新良,雷大鹏,许风雷,张立强,栾信庸 . 梨状窝内侧壁癌的手术治疗[J]. 山东大学耳鼻喉眼学报, 2007, 21(1): 8 -11 .
[5] 楼正才 . 掌拳击伤鼓膜损伤机制及临床特点分析[J]. 山东大学耳鼻喉眼学报, 2008, 22(2): 188 -188 .
[6] 刘 艳,刘新义,王金平,李大健 . 后鼓室解剖结构测量观察及临床意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 218 -221 .
[7] 赵 敏,王守森,甄泽年,陈贤明,王茂鑫 . 鼻内镜联合显微镜行蝶窦及经蝶鞍区微创手术[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 244 -245 .
[8] 伦 杰,吕心红 . 鼻部脂溢性角化病1例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 252 -252 .
[9] 王红霞,王鹏程 . NSE、S100及GFAP在视网膜母细胞瘤中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 263 -264 .
[10] 黄 方,黄海琼,黄建强,何荷蕃 . 支气管内镜视频监视系统在小儿气管-支气管异物诊治中的应用[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 276 -277 .