山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (4): 1-7.doi: 10.6040/j.issn.1673-3770.0.2020.399
• 论著 • 下一篇
李化静,郝润梅,戴皓,张令,申震,权芳,邵渊
LI Huajing, HAO Runmei, DAI Hao, ZHANG Ling, SHEN Zhen, QUAN Fang, SHAO Yuan
摘要: 目的 研究儿茶素抑制卵清蛋白(OVA)诱导的过敏性鼻炎小鼠炎症反应的机制。 方法 将BALB/c小鼠随机分为对照组、模型组(OVA诱导的过敏性鼻炎小鼠模型),儿茶素低、中和高剂量组(用50、100和200 mg/kg的儿茶素治疗的过敏性鼻炎小鼠)和氯雷他定(2 mg/kg氯雷他定治疗的过敏性鼻炎小鼠)组,每组10只。治疗后对各组小鼠进行症状评分。使用苏木精-伊红、Giemsa、Periodic acid-Schiff和甲苯胺蓝对鼻组织切片进行染色。使用ELISA试剂盒检测小鼠鼻腔灌洗液(NALF)中的Th1相关细胞因子(TNF-γ和IL-12)、Th2相关细胞因子(TNF-α、IL-1β和IL-6)、Th17相关细胞因子(IL-17A)水平。使用ELISA试剂盒检测小鼠血清中OVA特异性IgE和IgG1。通过Western blot检测小鼠鼻黏膜组织中NF-κB p65、nucleus-NF-κB p65、STAT3、p-STAT3和ROR-γt的蛋白表达。 结果 与模型组相比,儿茶素中剂量和高剂量组小鼠的症状评分明显降低(F=13.245,P<0.001);儿茶素治疗以剂量依赖性方式降低了鼻黏膜组织中的嗜酸性粒细胞、杯状细胞和肥大细胞数(F=15.462,P<0.001);儿茶素治疗以剂量依赖性方式降低了小鼠血清OVA特异性IgE和IgG1的水平(F=21.544,P<0.001)。各组小鼠NALF中Th1相关细胞因子水平无变化(TNF-γ:F=0.753,P=0.600;IL-12:F=0.846,P=0.519)。与模型组相比,儿茶素治疗以剂量依赖性方式降低了小鼠NALF中Th2(TNF-α:F=11.100,P<0.001;IL-1β:F=12.554,P<0.001;IL-6:F=17.853,P<0.001)和Th17相关细胞因子的水平(IL-17A:F=28.139,P<0.001)。与模型组相比,儿茶素治疗以剂量依赖性方式降低了小鼠鼻黏膜组织中nucleus-NF-κB p65(F=17.573,P<0.001)、ROR-γt(F=26.463,P<0.001)和p-STAT3的水平(F=17.859,P<0.001)。 结论 儿茶素在OVA诱导的过敏性鼻炎小鼠模型中具有较好的抗炎效果。儿茶素的抗炎机制与纠正Th1/Th2细胞因子平衡、抑制Th17反应、抑制NF-κB和ROR-γt/ STAT3途径有关。
中图分类号:
[1] 林兴, 沈翎, 林宗通, 等. 儿童鼻腔异物与过敏性鼻炎关系的初步研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 101-104. doi:10.6040/j.issn.1673-3770.0.2020.243. LIN Xing, SHEN Ling, LIN Zongtong, et al. Relationship between nasal foreign body and allergic rhinitis in children: a preliminary study[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 101-104. doi:10.6040/j.issn.1673-3770.0.2020.243. [2] Bernstein DI, Schwartz G, Bernstein JA. Allergic rhinitis: mechanisms and treatment[J]. Immunol Allergy Clin N Am, 2016, 36(2): 261-278. doi:10.1016/j.iac.2015.12.004. [3] Bayar Muluk N, Bafaqeeh SA, Cingi C. Anti-IgE treatment in allergic rhinitis[J]. Int J Pediatr Otorhinolaryngol, 2019, 127: 109674. doi:10.1016/j.ijporl.2019.109674. [4] Ma K, Zhang H, Baloch Z. Pathogenetic and therapeutic applications of tumor necrosis factor-α(TNF-α)in major depressive disorder: a systematic review[J]. Int J Mol Sci, 2016, 17(5). doi:10.3390/ijms17050733. doi:10.3390/ijms17050733. [5] Chen XW, Zhou SF. Inflammation, cytokines, the IL-17/IL-6/STAT3/NF-κB axis, and tumorigenesis[J]. Drug Des Devel Ther, 2015, 9: 2941-2946. doi:10.2147/dddt.s86396. [6] Sun N, Guo H, Wang Y. Retinoic acid receptor-related orphan receptor gamma-t(RORγt)inhibitors in clinical development for the treatment of autoimmune diseases: a patent review(2016-present)[J]. Expert Opin Ther Pat, 2019, 29(9): 663-674. doi:10.1080/13543776.2019.1655541. [7] Wee JH, Zhang YL, Rhee CS, et al. Inhibition of allergic response by intranasal selective NF-κB decoy oligodeoxynucleotides in a murine model of allergic rhinitis[J]. Allergy Asthma Immunol Res, 2017, 9(1): 61-69. doi:10.4168/aair.2017.9.1.61. [8] Zhou E, Fu Y, Wei Z, et al. Inhibition of allergic airway inflammation through the blockage of NF-κB activation by ellagic acid in an ovalbumin-induced mouse asthma model[J]. Food Funct, 2014, 5(9): 2106-2112. doi:10.1039/c4fo00384e. [9] Mathur S, Hoskins C. Drug development: Lessons from nature[J]. Biomed Rep, 2017, 6(6): 612-614. doi:10.3892/br.2017.909. [10] Lee HA, Song YR, Park MH, et al. Catechin ameliorates Porphyromonas gingivalis-induced inflammation via the regulation of TLR2/4 and inflammasome signaling[J]. J Periodontol, 2020, 91(5): 661-670. doi:10.1002/JPER.18-0004. [11] Syed Hussein SS, Kamarudin MNA, Abdul Kadir H.(+)-catechin attenuates NF-κB activation through regulation of Akt, MAPK, and AMPK signaling pathways in LPS-induced BV-2 microglial cells[J]. Am J Chin Med, 2015, 43(5): 927-952. doi:10.1142/s0192415x15500548. [12] 闫亚杰, 阮岩, 潘增烽, 等. 儿茶素对变应性鼻炎小鼠Th17/Treg表达的影响[J]. 中药新药与临床药理, 2018,29(3): 251-256. doi:10.19378/j.issn.1003-9783.2018.03.001. YAN Yajie, RUAN Yan, PAN Zengfeng, et al. Effects of catechin on the expression of Th17/treg in allergic rhinitis mice[J]. Tradit Chin Drug Res Clin Pharmacol, 2018,29(3): 251-256. doi:10.19378/j.issn.1003-9783.2018.03.001. [13] Pan ZF, Zhou Y, Luo X, et al. Against NF-κB/thymic stromal lymphopoietin signaling pathway, catechin alleviates the inflammation in allergic rhinitis[J]. Int Immunopharmacol, 2018, 61: 241-248. doi:10.1016/j.intimp.2018.06.011. [14] Kim DY, Fukuyama S, Nagatake T, et al. Implications of nasopharynx-associated lymphoid tissue(NALT)in the development of allergic responses in an allergic rhinitis mouse model[J]. Allergy, 2012, 67(4): 502-509. doi:10.1111/j.1398-9995.2011.02782.x. [15] 郑永艳, 周园, 周联, 等. 小青龙汤抗过敏作用及其机制研究[J]. 时珍国医国药, 2017, 28(5): 1052-1055. doi:10.3969/j.issn.1008-0805.2017.05.011. [16] Fan XH, Cheng L, Yan AH. Ameliorative effect of acetylshikonin on ovalbumin(OVA)-induced allergic rhinitis in mice through the inhibition of Th2 cytokine production and mast cell histamine release[J]. APMIS, 2019, 127(10): 688-695. doi:10.1111/apm.12984. [17] Ciprandi G, Marseglia GL, Castagnoli R, et al. From IgE to clinical trials of allergic rhinitis[J]. Expert Rev Clin Immunol, 2015, 11(12): 1321-1333. doi:10.1586/1744666x.2015.1086645. [18] Batard T, Weyer A, Laroze A, et al. Isotypic analysis of grass pollen-specific antibodies in human plasma. 4. Biological activity of allergen-specific and autoanti-IgE antibody fractions on basophil histamine release[J]. Clin Exp Allergy, 1996, 26(11): 1308-1315. doi:10.1111/j.1365-2222.1996.tb00528.x. [19] Ulanova M, Asfaha S, Stenton G, et al. Involvement of Syk protein tyrosine kinase in LPS-induced responses in macrophages[J]. J Endotoxin Res, 2007, 13(2): 117-125. doi:10.1177/0968051907079125. [20] Yoshino S, Mizutani N, Matsuoka D, et al. Intratracheal exposure to Fab fragments of an allergen-specific monoclonal antibody regulates asthmatic responses in mice[J]. Immunology, 2014, 141(4): 617-627. doi:10.1111/imm.12225. [21] Bf M. Allergic rhinitis and inflammatory airway disease: interactions within the unifiedairspace[J]. Chinese Medical Digest(Otorhinolaryngology), 2011,26(2): 111. doi:10.19617/j.issn1001-1307.2011.02.026. [22] Tan HL, Rosenthal M. IL-17 in lung disease: friend or foe?[J]. Thorax, 2013, 68(8): 788-790. doi:10.1136/thoraxjnl-2013-203307. [23] Sun SC. The non-canonical NF-κB pathway in immunity and inflammation[J]. Nat Rev Immunol, 2017, 17(9): 545-558. doi:10.1038/nri.2017.52. [24] Zhang K, Liu JY, You XT, et al. P2X7 as a new target for chrysophanol to treat lipopolysaccharide-induced depression in mice[J]. Neurosci Lett, 2016, 613: 60-65. doi:10.1016/j.neulet.2015.12.043. [25] Mitchell JP, Carmody RJ. NF-κB and the transcriptional control of inflammation[J]. Int Rev Cell Mol Biol, 2018, 335: 41-84. doi:10.1016/bs.ircmb.2017.07.007. [26] 倪菁, 雷飞, 白丹, 等. 儿童分泌性中耳炎耳积液中免疫相关指标表达分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 56-59. doi:10.6040/j.issn.1673-3770.0.2018.230. NI Jing, LEI Fei, BAI Dan, et al. Expression of immunological markers in middle ear effusion in children with secretory otitis media[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 56-59. doi:10.6040/j.issn.1673-3770.0.2018.230. [27] Subbanna M, Shivakumar V, Talukdar PM, et al. Role of IL-6/RORC/IL-22 axis in driving Th17 pathway mediated immunopathogenesis of schizophrenia[J]. Cytokine, 2018, 111: 112-118. doi:10.1016/j.cyto.2018.08.016. |
[1] | 朱晶,张睿,赵媛,李炀,樊孟耘,赵昱. 内镜下低温等离子消融治疗不同炎症分期先天性梨状窝瘘45例[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 24-29. |
[2] | 马静远, 武天义, 孙占伟, 王卫卫, 李世超, 王广科. 鼻腔鼻窦内翻性乳头状瘤与外周血炎症标志物的相关性研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 35-39. |
[3] | 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14. |
[4] | 梁旭,史丽. 慢性鼻窦炎生物靶向药物治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 30-35. |
[5] | 石帅,郑泉,程雷. 度普利尤单抗在慢性鼻窦炎伴鼻息肉治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 36-42. |
[6] | 黄丹怡,张婷,陈静,张薇. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83. |
[7] | 刘真,宋西成. 细胞焦亡在变应性鼻炎中的作用机制及研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 123-129. |
[8] | 王娜,柴向斌. 前列腺源性ETS因子在哮喘及鼻黏膜炎性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 136-141. |
[9] | 刘一潼,周穗子,邱前辉. NLRP3炎症小体在慢性鼻窦炎和变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 142-146. |
[10] | 张雅琪,刘慧敏,曹淋曼,王子钰,林旭,李燕萍,薛刚,吴靖芳. MAPK、PI3K-AKT、NF-κB在小鼠过敏性鼻炎中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 254-259. |
[11] | 狄宇,李莹. 干眼炎症反应机制及抗炎治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 144-150. |
[12] | 庞冲,边赛男,张冰,尹旭,陆颖霞,叶鹏飞,王湛,赵晶,高彦,关凯. 儿童过敏性鼻炎粉尘螨特异性舌下免疫治疗短期疗效评估[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 70-74. |
[13] | 王鑫,刘巧平,闫占峰,刘思溟,朱雅静,丁倩,张莹,田媛,张京然. 基于网络药理学探究小青龙汤治疗过敏性鼻炎的作用机制[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 46-55. |
[14] | 王宇婷,王嘉玺. microRNA在过敏性鼻炎发病机制中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 98-104. |
[15] | 张旭平,刘雪霞张华. 外泌体在变态反应性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 136-140. |
|