山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (2): 139-143.doi: 10.6040/j.issn.1673-3770.0.2021.052
姚周周,张革化,常利红
YAO Zhouzhou
摘要: 自噬是一种高度保守的溶酶体介导的细胞进程,对维持细胞内稳态具有重要意义,与多种疾病的发生发展密切相关,在肿瘤细胞中具有双重作用。汉防己甲素是从植物中提取的一种双苄基异喹啉类生物碱,在体内外均显示出广泛的抗肿瘤作用,近年来其调节自噬的活性受到了广泛的关注和研究。综述近10年来汉防己甲素在调控肿瘤细胞自噬中的研究进展,为其抗肿瘤作用提供研究思路。
中图分类号:
[1] Lim SM, Mohamad Hanif EA, Chin SF. Is targeting autophagy mechanism in cancer a good approach? The possible double-edge sword effect[J]. Cell Biosci, 2021, 11(1): 56. doi:10.1186/s13578-021-00570-z. [2] Xu DW, Zhang GQ, Wang ZW, et al. Autophagy in tumorigenesis and cancer treatment[J]. Asian Pac J Cancer Prev, 2015, 16(6): 2167-2175. doi:10.7314/apjcp.2015.16.6.2167. [3] Linder B, Kögel D. Autophagy in Cancer Cell Death[J]. Biology, 2019, 8(4): 82. doi: 10.3390/biology8040082. [4] Bhagya N, Chandrashekar KR. Tetrandrine: a molecule of wide bioactivity[J]. Phytochemistry, 2016, 125: 5-13. doi:10.1016/j.phytochem.2016.02.005. [5] Li X, Wu ZX, He B, et al. Tetrandrine alleviates symptoms of rheumatoid arthritis in rats by regulating the expression of cyclooxygenase-2 and inflammatory factors[J]. Exp Ther Med, 2018, 16(3): 2670-2676. doi:10.3892/etm.2018.6498. [6] Li X, Jin Q, Wu YL, et al. Tetrandrine regulates hepatic stellate cell activation via TAK1 and NF-κB signaling[J]. Int Immunopharmacol, 2016, 36: 263-270. doi:10.1016/j.intimp.2016.04.039. [7] Luan F, He XR, Zeng N. Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems[J]. J Pharm Pharmacol, 2020, 72(11): 1491-1512. doi:10.1111/jphp.13339. [8] Wang HQ, Liu T, Li L, et al. Tetrandrine is a potent cell autophagy agonist via activated intracellular reactive oxygen species[J]. Cell Biosci, 2015, 5: 4. doi:10.1186/2045-3701-5-4. [9] Jh F, Yh F. Tetrandine: pharmacology and clinical usefulness[J]. Chin Pharma, 1996, 31: 454-456. [10] Qiu W, Su M, Xie F, et al. Tetrandrine blocks autophagic flux and induces apoptosis via energetic impairment in cancer cells[J]. Cell Death Dis, 2014, 5: e1123. doi:10.1038/cddis.2014.84. [11] Li W, He PC, Huang YG, et al. Selective autophagy of intracellular organelles: recent research advances[J]. Theranostics, 2021, 11(1): 222-256. doi:10.7150/thno.49860. [12] Cuomo F, Altucci L, Cobellis G. Autophagy function and dysfunction: potential drugs as anti-cancer therapy[J]. Cancers(Basel), 2019, 11(10): E1465. doi:10.3390/cancers11101465. [13] Janku F, McConkey DJ, Hong DS, et al. Autophagy as a target for anticancer therapy[J]. Nat Rev Clin Oncol, 2011, 8(9): 528-539. doi:10.1038/nrclinonc.2011.71. [14] Wu LC, Wang GZ, Liu SB, et al. Synthesis and biological evaluation of matrine derivatives containing benzo-α-pyrone structure as potent anti-lung cancer agents[J]. Sci Rep, 2016, 6: 35918. doi:10.1038/srep35918. [15] Xu HD, Qin ZH. Beclin 1, bcl-2 and autophagy[J]. Adv Exp Med Biol, 2019, 1206: 109-126. doi:10.1007/978-981-15-0602-4_5. [16] Thongchot S, Vidoni C, Ferraresi A, et al. Dihydroartemisinin induces apoptosis and autophagy-dependent cell death in cholangiocarcinoma through a DAPK1-BECLIN1 pathway[J]. Mol Carcinog, 2018, 57(12): 1735-1750. doi:10.1002/mc.22893. [17] Li HY, Zhang J, Sun LL, et al. Celastrol induces apoptosis and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells: an in vitro and in vivo study[J]. Cell Death Dis, 2015, 6: e1604. doi:10.1038/cddis.2014.543. [18] Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death: apoptosis, autophagy and senescence[J]. Febs J, 2010, 277(1): 2-21. doi:10.1111/j.1742-4658.2009.07366.x. [19] Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy[J]. Nat Rev Mol Cell Biol, 2018, 19(6): 349-364. doi:10.1038/s41580-018-0003-4. [20] Feng YC, He D, Yao ZY, et al. The machinery of macroautophagy[J]. Cell Res, 2014, 24(1): 24-41. doi:10.1038/cr.2013.168. [21] Huang AC, Lien JC, Lin MW, et al. Tetrandrine induces cell death in SAS human oral cancer cells through caspase activation-dependent apoptosis and LC3-I and LC3-II activation-dependent autophagy[J]. Int J Oncol, 2013, 43(2): 485-494. doi:10.3892/ijo.2013.1952. [22] Yu FS, Yu CS, Chen JC, et al. Tetrandrine induces apoptosis Via caspase-8, -9, and -3 and poly(ADP ribose)polymerase dependent pathways and autophagy through beclin-1/ LC3-I, II signaling pathways in human oral cancer HSC-3 cells[J]. Environ Toxicol, 2016, 31(4): 395-406. doi:10.1002/tox.22053. [23] Liu CY, Gong K, Mao X, et al. Tetrandrine induces apoptosis by activating reactive oxygen species and repressing Akt activity in human hepatocellular carcinoma[J]. Int J Cancer, 2011, 129(6): 1519-1531. doi:10.1002/ijc.25817. [24] Gong K, Chen C, Zhan Y, et al. Autophagy-related gene 7(ATG7)and reactive oxygen species/extracellular signal-regulated kinase regulate tetrandrine-induced autophagy in human hepatocellular carcinoma[J]. J Biol Chem, 2012, 287(42): 35576-35588. doi:10.1074/jbc.M112.370585. [25] Kou B, Liu W, Xu X, et al. Autophagy induction enhances tetrandrine-induced apoptosis via the AMPK/mTOR pathway in human bladder cancer cells[J]. Oncol Rep, 2017, 38(5): 3137-3143. doi:10.3892/or.2017.5988. [26] Bai XY, Liu YG, Song W, et al. Anticancer activity of tetrandrine by inducing pro-death apoptosis and autophagy in human gastric cancer cells[J]. J Pharm Pharmacol, 2018, 70(8): 1048-1058. doi:10.1111/jphp.12935. [27] de Thé H. Differentiation therapy revisited[J]. Nat Rev Cancer, 2018, 18(2): 117-127. doi:10.1038/nrc.2017.103. [28] Chen ZH, Wang WT, Huang W, et al. The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway[J]. Cell Death Differ, 2017, 24(2): 212-224. doi:10.1038/cdd.2016.111. [29] Wu GX, Liu T, Li H, et al. C-MYC and reactive oxygen species play roles in tetrandrine-induced leukemia differentiation[J]. Cell Death Dis, 2018, 9(5): 473. doi:10.1038/s41419-018-0498-9. [30] Liu T, Men Q, Wu G, et al. Tetrandrine induces autophagy and differentiation by activating ROS and Notch1 signaling in leukemia cells[J]. Oncotarget, 2015, 6(10): 7992-8006. doi:10.18632/oncotarget.3505. [31] Liu T, Zhang ZX, Yu CJ, et al. Tetrandrine antagonizes acute megakaryoblastic leukaemia growth by forcing autophagy-mediated differentiation[J]. Br J Pharmacol, 2017, 174(23): 4308-4328. doi:10.1111/bph.14031. [32] 王文萍. 实用肿瘤转移学[M]. 沈阳: 辽宁科学技术出版社, 2003. [33] Babaei G, Aziz SG, Jaghi NZZ. EMT, cancer stem cells and autophagy; The three main axes of metastasis[J]. Biomedecine Pharmacother, 2021, 133: 110909. doi:10.1016/j.biopha.2020.110909. [34] Zhang J, Yang ZZ, Xie L, et al. Statins, autophagy and cancer metastasis[J]. Int J Biochem Cell Biol, 2013, 45(3): 745-752. doi:10.1016/j.biocel.2012.11.001. [35] Zhang ZX, Liu T, Yu M, et al. The plant alkaloid tetrandrine inhibits metastasis via autophagy-dependent Wnt/β-catenin and metastatic tumor antigen 1 signaling in human liver cancer cells[J]. J Exp Clin Cancer Res, 2018, 37(1): 7. doi:10.1186/s13046-018-0678-6. [36] Chen YR, Li PC, Yang S, et al. Tetrandrine enhances the anticancer effects of arsenic trioxide in vitro[J]. Int J Clin Pharmacol Ther, 2014, 52(5): 416-424. doi:10.5414/CP201939. [37] Yu M, Liu T, Chen YC, et al. Combination therapy with protein kinase inhibitor H89 and Tetrandrine elicits enhanced synergistic antitumor efficacy[J]. J Exp Clin Cancer Res, 2018, 37(1): 114. doi:10.1186/s13046-018-0779-2. [38] Yao MJ, Yuan B, Wang X, et al. Synergistic cytotoxic effects of arsenite and tetrandrine in human breast cancer cell line MCF-7[J]. Int J Oncol, 2017, 51(2): 587-598. doi:10.3892/ijo.2017.4052. [39] Yu BW, Yuan B, Li JZ, et al. JNK and autophagy independently contributed to cytotoxicity of arsenite combined with tetrandrine via modulating cell cycle progression in human breast cancer cells[J]. Front Pharmacol, 2020, 11: 1087. doi:10.3389/fphar.2020.01087. [40] Mei LF, Chen YC, Wang ZM, et al. Synergistic anti-tumour effects of tetrandrine and chloroquine combination therapy in human cancer: a potential antagonistic role for p21[J]. Br J Pharmacol, 2015, 172(9): 2232-2245. doi:10.1111/bph.13045. [41] Kimura T, Takabatake Y, Takahashi A, et al. Chloroquine in cancer therapy: a double-edged sword of autophagy[J]. Cancer Res, 2013, 73(1): 3-7. doi:10.1158/0008-5472.CAN-12-2464. [42] Sato E, Ohta S, Kawakami K, et al. Tetrandrine increases the sensitivity of human lung adenocarcinoma PC14 cells to gefitinib by lysosomal inhibition[J]. Anticancer Res, 2019, 39(12): 6585-6593. doi:10.21873/anticanres.13874. [43] Wang YT, Yue W, Lang HY, et al. Resuming sensitivity of tamoxifen-resistant breast cancer cells to tamoxifen by tetrandrine[J]. Integr Cancer Ther, 2021, 20: 1534735421996822. doi:10.1177/1534735421996822. [44] Hu SC, Yang J, Chen C, et al. Design, synthesis of novel tetrandrine-14-l-amino acid and tetrandrine-14-l-amino acid-urea derivatives as potential anti-cancer agents[J]. Molecules, 2020, 25(7): 1738. doi:10.3390/molecules25071738. [45] Schütz R, Müller M, Geisslinger F, et al. Synthesis, biological evaluation and toxicity of novel tetrandrine analogues[J]. Eur J Med Chem, 2020, 207: 112810. doi:10.1016/j.ejmech.2020.112810. [46] Que X, Su J, Guo PC, et al. Study on preparation, characterization and multidrug resistance reversal of red blood cell membrane-camouflaged tetrandrine-loaded PLGA nanoparticles[J]. Drug Deliv, 2019, 26(1): 199-207. doi:10.1080/10717544.2019.1573861. [47] Wang KP, Hu HP, Zhang Q, et al. Synthesis, purification, and anticancer effect of magnetic Fe3O4-loaded poly(lactic-co-glycolic)nanoparticles of the natural drug tetrandrine[J]. J Microencapsul, 2019, 36(4): 356-370. doi:10.1080/02652048.2019.1631403. [48] Li JJ, Jin X, Zhang LL, et al. Comparison of different chitosan lipid nanoparticles for improved ophthalmic tetrandrine delivery: formulation, characterization, pharmacokinetic and molecular dynamics simulation[J]. J Pharm Sci, 2020, 109(12): 3625-3635. doi:10.1016/j.xphs.2020.09.010. [49] Liu CX, Lv L, Guo W, et al. Self-nanoemulsifying drug delivery system of tetrandrine for improved bioavailability: physicochemical characterization and pharmacokinetic study[J]. Biomed Res Int, 2018, 2018: 6763057. doi:10.1155/2018/6763057. [50] Guo KF, Cang J. A novel tetrandrine-loaded chitosan microsphere: characterization and in vivo evaluation[J]. Drug Des Devel Ther, 2016, 10: 1291-1298. doi:10.2147/DDDT.S103169. |
[1] | 苏杰,杨馥宇,李猛,陈荟茹,蒋利生,王丽香. GLP-1诱导的自噬对糖尿病大鼠视网膜病变的保护作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 30-34. |
[2] | 宋晴 宋西成. 安罗替尼联合治疗在肿瘤治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 106-112. |
[3] | 黄扬周,傅丽华,吴巧莲,黄霞,林隽,叶青. 乳突结节性筋膜炎误诊1例[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 119-121. |
[4] | 龚霄阳,李旺,陈曦. 原发性咽旁间隙肿瘤67例回顾性分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 60-65. |
[5] | 张礼俊, 胥然, 罗继芳, 刘国旗, 何千, 李玮, 蒋振华. 头颈肿瘤游离皮瓣修复术后皮瓣坏死及皮瓣相关并发症影响因素分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 86-90. |
[6] | 毛泽凡陈曦,程雷. 喉神经内分泌癌的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 114-119. |
[7] | 王媚 李志海. 喉癌干细胞:克服多药耐药性的潜在治疗靶点[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 120-128. |
[8] | 陈家宏,王琳,姜彦,于龙刚,张继生,张志勇,孔静文. 原发性鼻腔鼻窦骨外尤文肉瘤/外周原始神经外胚层肿瘤2例并文献复习[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 290-296. |
[9] | 赵笑冰,张大为,陈仁杰. 中耳间变性大T细胞淋巴瘤1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 7-14. |
[10] | 李玲,李聪,孙岩,陈良. 婴儿中耳胚胎型横纹肌肉瘤1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 55-59. |
[11] | 陈坤,陆慧,黄琦,李磊,孟国珍,杨军,侯东明. 小儿先天性鼻腔鼻窦肿物的临床诊疗观察[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 81-85. |
[12] | 陈学军,高文,尹高菲,郭伟,黄俊伟,张洋. 鼻腔鼻窦神经内分泌癌8例并文献复习[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 77-82. |
[13] | 周宇翔,苗北平,卢永田. 首诊鼻咽癌内镜手术的治疗进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 108-112. |
[14] | 王俊鑫孙岩. miRNA-29b参与上皮间质转化相关信号通路调控的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 132-137. |
[15] | 张小艳,郝晓凤谢立科. 脉络膜骨瘤的相干光断层扫描特征的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 138-141. |
|